
SQL1

Student Guide • Volume 1

40057GC10
Production 1.0
July 2001
D33478

Copyright © Oracle Corporation, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

Oracle and all references to Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Authors

Nancy Greenberg
Priya Nathan

Technical Contributors
and Reviewers

Josephine Turner
Martin Alvarez
Anna Atkinson
Don Bates
Marco Berbeek
Andrew Brannigan
Laszlo Czinkoczki
Michael Gerlach
Sharon Gray
Rosita Hanoman
Mozhe Jalali
Sarah Jones
Charbel Khouri
Christopher Lawless
Diana Lorentz
Nina Minchen
Cuong Nguyen
Daphne Nougier
Patrick Odell
Laura Pezzini
Stacey Procter
Maribel Renau
Bryan Roberts
Helen Robertson
Sunshine Salmon
Casa Sharif
Bernard Soleillant
Craig Spoonemore
Ruediger Steffan
Karla Villasenor
Andree Wheeley
Lachlan Williams

Publisher

Sheryl Domingue

Preface

Curriculum Map

I Introduction
Objectives I-2
Oracle9i I-3
Oracle9i Application Server I-5
Oracle9i Database I-6
Oracle9i: Object Relational Database Management System I-8
Oracle Internet Platform I-9
System Development Life Cycle I-10
Data Storage on Different Media I-12
Relational Database Concept I-13
Definition of a Relational Database I-14
Data Models I-15
Entity Relationship Model I-16
Entity Relationship Modeling Conventions I-17
Relating Multiple Tables I-19
Relational Database Terminology I-20
Relational Database Properties I-21
Communicating with a RDBMS Using SQL I-22
Relational Database Management System I-23
SQL Statements I-24
Tables Used in the Course I-25
Summary I-26

1 Writing Basic SQL SELECT Statements
Objectives 1-2
Capabilities of SQL SELECT Statements 1-3
Basic SELECT Statement 1-4
Selecting All Columns 1-5
Selecting Specific Columns 1-6
Writing SQL Statements 1-7
Column Heading Defaults 1-8
Arithmetic Expressions 1-9
Using Arithmetic Operators 1-10
Operator Precedence 1-11
Using Parentheses 1-13
Defining a Null Value 1-14
Null Values in Arithmetic Expressions 1-15
Defining a Column Alias 1-16
Using Column Aliases 1-17
Concatenation Operator 1-18
Using the Concatenation Operator 1-19

Contents

iii

Literal Character Strings 1-20
Using Literal Character Strings 1-21
Duplicate Rows 1-22
Eliminating Duplicate Rows 1-23
SQL and iSQL*Plus Interaction 1-24
SQL Statements Versus iSQL*Plus Commands 1-25
Overview of iSQL*Plus 1-26
Logging In to iSQL*Plus 1-27
The iSQL*Plus Environment 1-28
Displaying Table Structure 1-29
Interacting with Script Files 1-31
Summary 1-34
Practice Overview 1-35

2 Restricting and Sorting Data
Objectives 2-2
Limiting Rows Using a Selection 2-3
Limiting the Rows Selected 2-4
Using the WHERE Clause 2-5
Character Strings and Dates 2-6
Comparison Conditions 2-7
Using Comparison Conditions 2-8
Other Comparison Conditions 2-9
Using the BETWEEN Condition 2-10
Using the IN Condition 2-11
Using the LIKE Condition 2-12
Using the NULL Conditions 2-14
Logical Conditions 2-15
Using the AND Operator 2-16
Using the OR Operator 2-17
Using the NOT Operator 2-18
Rules of Precedence 2-19
ORDER BY Clause 2-22
Sorting in Descending Order 2-23
Sorting by Column Alias 2-24
Sorting by Multiple Columns 2-25
Summary 2-26
Practice 2 Overview 2-27

3 Single-Row Functions
Objectives 3-2
SQL Functions 3-3
Two Types of SQL Functions 3-4
Single-Row Functions 3-5
Character Functions 3-7

iv

Case Manipulation Functions 3-9
Using Case Manipulation Functions 3-10
Character-Manipulation Functions 3-11
Using the Character-Manipulation Functions 3-12
Number Functions 3-13
Using the ROUND Function 3-14
Using the TRUNC Function 3-15
Using the MOD Function 3-16
Working with Dates 3-17
Arithmetic with Dates 3-19
Using Arithmetic Operators with Dates 3-20
Date Functions 3-21
Using Date Functions 3-22
Practice 3, Part One: Overview 3-24
Conversion Functions 3-25
Implicit Data Type Conversion 3-26
Explicit Data Type Conversion 3-28
Using the TO_CHAR Function with Dates 3-31
Elements of the Date Format Model 3-32
Using the TO_CHAR Function with Dates 3-36
Using the TO_CHAR Function with Numbers 3-37
Using the TO_NUMBER and TO_DATE Functions 3-39
RR Date Format 3-40
Example of RR Date Format 3-41
Nesting Functions 3-42
General Functions 3-44
NVL Function 3-45
Using the NVL Function 3-46
Using the NVL2 Function 3-47
Using the NULLIF Function 3-48
Using the COALESCE Function 3-49
Conditional Expressions 3-51
The CASE Expression 3-52
Using the CASE Expression 3-53
The DECODE Function 3-54
Using the DECODE Function 3-55
Summary 3-57
Practice 3, Part Two: Overview 3-58

4 Displaying Data from Multiple Tables
Objectives 4-2
Obtaining Data from Multiple Tables 4-3

v

Cartesian Products 4-4
Generating a Cartesian Product 4-5
Types of Joins 4-6
Joining Tables Using Oracle Syntax 4-7
What is an Equijoin? 4-8
Retrieving Records with Equijoins 4-9
Additional Search Conditions Using the AND Operator 4-10
Qualifying Ambiguous Column Names 4-11
Using Table Aliases 4-12
Joining More than Two Tables 4-13
Non-Equijoins 4-14
Retrieving Records with Non-Equijoins 4-15
Outer Joins 4-16
Outer Joins Syntax 4-17
Using Outer Joins 4-18
Self Joins 4-19
Joining a Table to Itself 4-20
Practice 4, Part One: Overview 4-21
Joining Tables Using SQL: 1999 Syntax 4-22
Creating Cross Joins 4-23
Creating Natural Joins 4-24
Retrieving Records with Natural Joins 4-25
Creating Joins with the USING Clause 4-26
Retrieving Records with the USING Clause 4-27
Creating Joins with the ON Clause 4-28
Retrieving Records with the ON Clause 4-29
Creating Three-Way Joins with the ON Clause 4-30
INNER Versus OUTER Joins 4-31
LEFT OUTER JOIN 4-32
RIGHT OUTER JOIN 4-33
FULL OUTER JOIN 4-34
Additional Conditions 4-35
Summary 4-36
Practice 4, Part Two: Overview 4-37

5 Aggregating Data Using Group Functions
Objectives 5-2
What Are Group Functions? 5-3
Types of Group Functions 5-4
Group Functions Syntax 5-5
Using the AVG and SUM Functions 5-6
Using the MIN and MAX Functions 5-7

vi

Using the COUNT Function 5-8
Using the DISTINCT Keyword 5-10
Group Functions and Null Values 5-11
Using the NVL Function with Group Functions 5-12
Creating Groups of Data 5-13
Creating Groups of Data: The GROUP BY Clause Syntax 5-14
Using the GROUP BY Clause 5-15
Grouping by More Than One Column 5-17
Using the GROUP BY Clause on Multiple Columns 5-18
Illegal Queries Using Group Functions 5-19
Excluding Group Results 5-21
Excluding Group Results: The HAVING Clause 5-22
Using the HAVING Clause 5-23
Nesting Group Functions 5-25
Summary 5-26
Practice 5 Overview 5-27

6 Subqueries
Objectives 6-2
Using a Subquery to Solve a Problem 6-3
Subquery Syntax 6-4
Using a Subquery 6-5
Guidelines for Using Subqueries 6-6
Types of Subqueries 6-7
Single-Row Subqueries 6-8
Executing Single-Row Subqueries 6-9
Using Group Functions in a Subquery 6-10
The HAVING Clause with Subqueries 6-11
What is Wrong with this Statement? 6-12
Will this Statement Return Rows? 6-13
Multiple-Row Subqueries 6-14
Using the ANY Operator in Multiple-Row Subqueries 6-15
Using the ALL Operator in Multiple-Row Subqueries 6-16
Null Values in a Subquery 6-17
Summary 6-18
Practice 6 Overview 6-19

vii

7 Producing Readable Output with iSQL*Plus
Objectives 7-2
Substitution Variables 7-3
Using the & Substitution Variable 7-5
Character and Date Values with Substitution Variables 7-7
Specifying Column Names, Expressions, and Text 7-8
Defining Substitution Variables 7-10
DEFINE and UNDEFINE Commands 7-11
Using the DEFINE Command with & Substitution Variable 7-12
Using the VERIFY Command 7-14
Customizing the iSQL*Plus Environment 7-15
SET Command Variables 7-16
iSQL*Plus Format Commands 7-17
The COLUMN Command 7-18
Using the COLUMN Command 7-19
COLUMN Format Models 7-20
Using the BREAK Command 7-21
Using the TTITLE and BTITLE Commands 7-22
Creating a Script File to Run a Report 7-23
Sample Report 7-25
Summary 7-26
Practice 7 Overview 7-27

8 Manipulating Data
Objectives 8-2
Data Manipulation Language 8-3
Adding a New Row to a Table 8-4
The INSERT Statement Syntax 8-5
Inserting New Rows 8-6
Inserting Rows with Null Values 8-7
Inserting Special Values 8-8
Inserting Specific Date Values 8-9
Creating a Script 8-10
Copying Rows from Another Table 8-11
Changing Data in a Table 8-12
The UPDATE Statement Syntax 8-13
Updating Rows in a Table 8-14
Updating Two Columns with a Subquery 8-15
Updating Rows Based on Another Table 8-16
Updating Rows: Integrity Constraint Error 8-17
Removing a Row from a Table 8-18
The DELETE Statement 8-19

viii

Deleting Rows from a Table 8-20
Deleting Rows Based on Another Table 8-21
Deleting Rows: Integrity Constraint Error 8-22
Using a Subquery in an INSERT Statement 8-23
Using the WITH CHECK OPTION Keyword on DML Statements 8-25
Overview of the Explict Default Feature 8-26
Using Explicit Default Values 8-27
The MERGE Statement 8-28
The MERGE Statement Syntax 8-29
Merging Rows 8-30
Database Transactions 8-32
Advantages of COMMIT and ROLLBACK Statements 8-34
Controlling Transactions 8-35
Rolling Back Changes to a Marker 8-36
Implicit Transaction Processing 8-37
State of the Data Before COMMIT or ROLLBACK 8-38
State of the Data after COMMIT 8-39
Committing Data 8-40
State of the Data After ROLLBACK 8-41
Statement-Level Rollback 8-42
Read Consistency 8-43
Implementation of Read Consistency 8-44
Locking 8-45
Implicit Locking 8-46
Summary 8-47
Practice 8 Overview 8-48
Read Consistency Example 8-52

9 Creating and Managing Tables
Objectives 9-2
Database Objects 9-3
Naming Rules 9-4
The CREATE TABLE Statement 9-5
Referencing Another User’s Tables 9-6
The DEFAULT Option 9-7
Creating Tables 9-8
Tables in the Oracle Database 9-9
Querying the Data Dictionary 9-10
Data Types 9-11
DateTime Data Types 9-13
TIMESTAMP WITH TIME ZONE Data Type 9-15
TIMESTAMP WITH LOCAL TIME Data Type 9-16

ix

INTERVAL YEAR TO MONTH Data Type 9-17
Creating a Table by Using a Subquery Syntax 9 -18
Creating a Table by Using a Subquery 9-19
The ALTER TABLE Statement 9-20
Adding a Column 9-22
Modifying a Column 9-24
Dropping a Column 9-25
The SET UNUSED Option 9-26
Dropping a Table 9-27
Changing the Name of an Object 9-28
Truncating a Table 9-29
Adding Comments to a Table 9-30
Summary 9-31
Practice 9 Overview 9-32

10 Including Constraints
Objectives 10-2
What are Constraints? 10-3
Constraint Guidelines 10-4
Defining Constraints 10-5
The NOT NULL Constraint 10-7
The UNIQUE Constraint 10-9
The PRIMARY KEY Constraint 10-11
The FOREIGN KEY Constraint 10-13
FOREIGN KEY Constraint Keywords 10-15
The CHECK Constraint 10-16
Adding a Constraint Syntax 10-17
Adding a Constraint 10-18
Dropping a Constraint 10-19
Disabling Constraints 10-20
Enabling Constraints 10-21
Cascading Constraints 10-22
Viewing Constraints 10-24
Viewing the Columns Associated with Constraints 10-25
Summary 10-26
Practice 10 Overview 10-27

x

11 Creating Views
Objectives 11-2
Database Objects 11-3
What is a View? 11-4
Why use Views? 11-5
Simple Views and Complex Views 11-6
Creating a View 11-7
Retrieving Data from a View 11-10
Querying a View 11-11
Modifying a View 11-12
Creating a Complex View 11-13
Rules for Performing DML Operations on a View 11-14
Using the WITH CHECK OPTION Clause 11-17
Denying DML Operations 11-18
Removing a View 11-20
Inline Views 11-21
Top-N Analysis 11-22
Performing Top-N Analysis 11-23
Example of Top-N Analysis 11-24
Summary 11-25
Practice 11 Overview 11-26

12 Other Database Objects
Objectives 12-2
Database Objects 12-3
What is a Sequence? 12-4
The CREATE SEQUENCE Statement Syntax 12-5
Creating a Sequence 12-6
Confirming Sequences 12-7
NEXTVAL and CURRVAL Pseudocolumns 12-8
Using a Sequence 12-10
Modifying a Sequence 12-12
Guidelines for Modifying a Sequence 12-13
Removing a Sequence 12-14
What is an Index? 12-15
How Are Indexes Created? 12-16
Creating an Index 12-17
When to Create an Index 12-18
When Not to Create an Index 12-19
Confirming Indexes 12-20
Function-Based Indexes 12-21

xi

Removing an Index 12-22
Synonyms 12-23
Creating and Removing Synonyms 12-24
Summary 12-25
Practice 12 Overview 12-26

13 Controlling User Access
Objectives 13-2
Controlling User Access 13-3
Privileges 13-4
System Privileges 13-5
Creating Users 13-6
User System Privileges 13-7
Granting System Privileges 13-8
What is a Role? 13-9
Creating and Granting Privileges to a Role 13-10
Changing Your Password 13-11
Object Privileges 13-12
Granting Object Privileges 13-14
Using the WITH GRANT OPTION and PUBLIC Keywords 13-15
Confirming Privileges Granted 13-16
How to Revoke Object Privileges 13-17
Revoking Object Privileges 13-18
Database Links 13-19
Summary 13-21
Practice 13 Overview 13-22

14 SQL Workshop
Workshop Overview 14-2

A Practice Solutions

B Table Descriptions and Data

C Using SQL*Plus

Index

Additional Practices

Additional Practice Solutions

Additional Practices: Table Descriptions and Data

xii

Preface

Preface-3

Profile
Before You Begin This Course

Before you begin this course, you should be able to use a graphical user interface (GUI).
Required prerequisites are familiarity with data processing concepts and techniques.

How This Course Is Organized
Introduction to Oracle9i: SQL is an instructor-led course featuring lectures and hands-on
exercises. Online demonstrations and written practice sessions reinforce the concepts and
skills introduced.

Preface-4

Related Publications
Oracle Publications

Title Part Number

Oracle9i Reference, Release 1 (9.0.1) A90190-01
Oracle9i SQL Reference, Release 1 (9.0.1) A90125-01
Oracle9i Concepts, Release 1 (9.0.0) A88856-01
Oracle9i Server Application Developer’s Guide Fundamentals

Release 1 (9.0.1) A88876-01
iSQL*Plus User’s Guide and Reference, Release 9.0.0
SQL*Plus User’s Guide and Reference, Release 9.0.1 A88827-01

Additional Publications
• System release bulletins
• Installation and user’s guides
• read.me files
• International Oracle User’s Group (IOUG) articles
• Oracle Magazine

Preface-5

Typographic Conventions
What follows are two lists of typographical conventions used specifically within text or within
code.

Typographic Conventions Within Text
Convention Object or Term Example

Uppercase Commands, Use the SELECT command to view
functions, information stored in the LAST_NAME
column names, column of the EMPLOYEES table.
table names,
PL/SQL objects,
schemas

Lowercase, Filenames, where: role is the name of the role
italic syntax variables, to be created.

usernames,
passwords

Initial cap Trigger and Assign a When-Validate-Item trigger to
button names the ORD block.

Choose Cancel.

Italic Books, names of For more information on the subject see
courses and Oracle Server SQL Language Reference
manuals, and Manual
emphasized
words or phrases Do not save changes to the database.

Quotation marks Lesson module This subject is covered in Lesson 3,
titles referenced “Working with Objects.”
within a course

Preface-6

Typographic Conventions (continued)

Typographic Conventions Within Code
Convention Object or Term Example

Uppercase Commands, SELECT employee_id
functions FROM employees;

Lowercase, Syntax variables CREATE ROLE role;
italic

Initial cap Forms triggers Form module: ORD
Trigger level: S_ITEM.QUANTITY
item
Trigger name: When-Validate-Item
. . .

Lowercase Column names, . . .
table names, OG_ACTIVATE_LAYER
filenames, (OG_GET_LAYER ('prod_pie_layer'))
PL/SQL objects . . .

SELECT last_name
FROM employees;

Bold Text that must CREATE USER scott
be entered by a IDENTIFIED BY tiger;
user

Curriculum
Map

Curriculum Map-3

Copyright © Oracle Corporation, 2001. All rights reserved.

Introduction to Oracle9i
for

Experienced SQL Users

inClass

or

Advanced PL/SQL
inClass

SQL for
End Users

inClassExtended Data
Retrieval
with SQLSQL1

Introduction to Oracle9i: PL/SQL

inClass

Develop PL/SQL
Program Units

PL/SQL
Fundamentals

Introduction to
Oracle9i: SQL

inClass

Languages Curriculum for Oracle9i

Integrated Languages Curriculum
Introduction to Oracle9i: SQL consists of two modules, SQL1 and Extended Data Retrieval with SQL.
SQL1 covers creating database structures and storing, retrieving, and manipulating data in a relational
database. Extended Data Retrieval with SQL covers advanced SELECT statements, Oracle SQL, and
iSQL*Plus Reporting.
For people who have worked with other relational databases and have knowledge of SQL, another course
called Introduction to Oracle9i for Experienced SQL Users is offered. This course covers the SQL
statements that are not part of ANSI SQL but are specific to Oracle.
Introduction to Oracle9i: PL/SQL consists of two modules, PL/SQL Fundamentals and Develop PL/SQL
Program Units. PL/SQL Fundamentals covers PL/SQL basics including the PL/SQL language structure,
flow of execution and interface with SQL. Develop PL/SQL Program Units covers how to create stored
procedures, functions, packages, and triggers as well as maintaining and debugging program code.
SQL for End Users is geared towards individuals with little programming background and covers the basic
SQL statements. This course is for end users that need to know some basic SQL programming.
Advanced PL/SQL is appropriate for individuals who have experience in PL/SQL programming. It covers
coding efficiency topics, object-oriented programming, working with external code, and the advanced
features of the Oracle-supplied packages.

Curriculum Map-4

Copyright © Oracle Corporation, 2001. All rights reserved.

Introduction to Oracle9i
for

Experienced SQL Users

inClass

or

Advanced PL/SQL
inClass

SQL for
End Users

inClassExtended Data
Retrieval
with SQLSQL1

Introduction to Oracle9i: PL/SQL

inClass

Develop PL/SQL
Program Units

PL/SQL
Fundamentals

Introduction to
Oracle9i: SQL

inClass

Languages Curriculum for Oracle9i

Integrated Languages Curriculum
The slide lists various modules and courses that are available in the languages curriculum. The following
table lists the modules and courses with their equivalent TBTs.

Course or Module Equivalent TBT
SQL1 Oracle SQL: Basic SELECT Statements

Oracle SQL: Data Retrieval Techniques
Oracle SQL: DML and DDL

Extended Data Retrieval with SQL Oracle SQL and SQL*Plus: Advanced SELECT Statements
Oracle SQL and SQL*Plus: SQL*Plus and Reporting

Introduction to Oracle9i for
Experienced SQL Users

Oracle SQL Specifics: Retrieving and Formatting Data
Oracle SQL Specifics: Creating and Managing Database Objects

PL/SQL Fundamentals PL/SQL: Basics
Develop PL/SQL Program Units PL/SQL: Procedures, Functions, and Packages

PL/SQL: Database Programming
SQL for End Users SQL for End Users: Part 1

SQL for End Users: Part 2
Advanced PL/SQL Advanced PL/SQL: Implementation and Advanced Features

Advanced PL/SQL: Design Considerations and Object Types

Copyright © Oracle Corporation, 2001. All rights reserved.

Introduction

SQL1 I-2

Lesson Aim
In this lesson, you gain an understanding of the relational database management system (RDBMS) and the
object relational database management system (ORDBMS). You are also introduced to the following:

• SQL statements that are specific to Oracle
• iSQL*Plus, which is used for executing SQL and for formatting and reporting purposes

I-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able
to do the following:
• List the features of Oracle9i
• Discuss the theoretical and physical aspects of

a relational database
• Describe the Oracle implementation of the

RDBMS and ORDBMS

SQL1 I-3

I-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i

Scalability

Reliability

Single dev.
model

Common
skill sets

One mgmt.
interface

One
vendor

Oracle9i Features
Oracle offers a comprehensive high-performance infrastructure for e-business. It is called Oracle9i.
Oracle9i includes everything needed to develop, deploy, and manage Internet applications.
Benefits include:

• Scalability from departments to enterprise e-business sites
• Robust, reliable, available, secure architecture
• One development model, easy deployment options
• Leverage an organization’s current skillset throughout the Oracle platform (including SQL, PL/SQL,

Java, and XML)
• One management interface for all applications
• Industry standard technologies, no proprietary lock-in

SQL1 I-4

I-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i

Oracle9i
There are two products, Oracle9i Application Server and Oracle9i Database, that provide a complete and
simple infrastructure for Internet applications.

SQL1 I-5

I-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i Application Server

Business IntelligenceBusiness intelligence

Transactional AppsTransactional Apps

PortalsPortals

A
P
A
C
H
E

IntegrationIntegration

Oracle9i Application Server
The Oracle9i Application Server (Oracle9iAS) runs all your applications. The Oracle9i Database stores all
your data.
Oracle9i Application Server is the only application server to include services for all the different server
applications you will want to run. Oracle9iAS can run your:

• Portals or Web sites
• Java transactional applications
• Business intelligence applications

It also provides integration between users, applications, and data throughout your organization.

SQL1 I-6

I-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i Database

MultimediaMultimedia

Object Relational DataObject Relational Data

MessagesMessages

Documents

XML

Documents

XML

Oracle9i Database
The roles of the two products are very straightforward. Oracle9i Database manages all your data. This is not
just the object relational data that you expect an enterprise database to manage. It can also be unstructured
data like:

• Spreadsheets
• Word documents
• PowerPoint presentations
• XML
• Multimedia data types like MP3, graphics, video, and more

The data does not even have to be in the database. Oracle9i Database has services through which you can
store metadata about information stored in file systems. You can use the database server to manage and
serve information wherever it is located.

SQL1 I-7

I-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i Database

• Performance and availability leader
• Richest feature set

Oracle9i Database
The starting point for any discussion about application deployment is the database. Oracle9i Database is the
new flagship product from Oracle. It has an incredibly rich feature set.
Oracle9i Database is the only database specifically designed as an Internet development and deployment
platform, extending Oracle's long-standing technology leadership in the areas of data management,
transaction processing, and data warehousing to the new medium of the Internet. Built directly inside the
database, breakthrough Internet features help companies and developers build Internet-savvy applications
that lower costs, enhance customer and supplier interaction, and provide global information access across
platforms and across the enterprise.
The Oracle9i Database is an object relational database management system (ORDBMS). It has the full
capabilities and functionality of a relational database, plus the features of an object database.

SQL1 I-8

I-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle9i: Object Relational Database
Management System

• User-defined data types and objects
• Fully compatible with relational database
• Support of multimedia and large objects
• High-quality database server features

About Oracle9i
The Oracle server extends the data modeling capabilities to support an object relational database model that
brings object-oriented programming, complex datatypes, complex business objects, and full compatibility
with the relational world.
It includes several features for improved performance and functionality of online transaction processing
(OLTP) applications, such as better sharing of run-time data structures, larger buffer caches, and deferrable
constraints. Data warehouse applications will benefit from enhancements such as parallel execution of in sert,
update, and delete operations; partitioning; and parallel-aware query optimization. Operating within the
Network Computing Architecture (NCA) framework, Oracle9i supports client-server and Web-based
applications that are distributed and multitiered.
Oracle9i can scale tens of thousands of concurrent users, support up to 512 petabytes of data (a petabyte is
1,000 terabytes), and can handle any type of data, including text, spatial, image, sound, video, and time series
as well as traditional structured data.
For more information, see Oracle9i Concepts.

SQL1 I-9

Oracle Internet Platform
Oracle offers a comprehensive high-performance Internet platform for e-commerce and data warehousing.
This integrated platform includes everything needed to develop, deploy, and manage Internet applications.
The Oracle Internet Platform is built on three core pieces:

• Browser-based clients to process presentation
• Application servers to execute business logic and serve presentation logic to browser-based clients
• Databases to execute database-intensive business logic and serve data

Oracle offers a wide variety of the most advanced graphical user interface (GUI) driven development tools to
build business applications, as well as a large suite of software applications for many areas of business and
industry. Stored procedures, functions, and packages can be written by using SQL, PL/SQL, or Java.

I-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Oracle Internet Platform

Clients

S
ys

te
m

 m
an

ag
em

en
t

Network services

Databases
Application

servers

D
evelopm

ent tools

Internet applications

Presentation and
business logic

Business logic
and data

Any browser Any FTP client
Any mail
client

Java

SQL

PL/SQL

SQL1 I-10

System Development Life Cycle
From concept to production, you can develop a database by using the system development life cycle, which
contains multiple stages of development. This top-down, systematic approach to database development
transforms business information requirements into an operational database.
Strategy and Analysis

• Study and analyze the business requirements. Interview users and managers to identify the
information requirements. Incorporate the enterprise and application mission statements as well as
any future system specifications.

• Build models of the system. Transfer the business narrative into a graphical representation of
business information needs and rules. Confirm and refine the model with the analysts and experts.

Design
Design the database based on the model developed in the strategy and analysis phase.
Build and Document

• Build the prototype system. Write and execute the commands to create the tables and supporting
objects for the database.

• Develop user documentation, Help text, and operations manuals to support the use and operation of
the system.

I-10 Copyright © Oracle Corporation, 2001. All rights reserved.

System Development Life Cycle

Strategy
and

analysis
Design

Build
and

document
Transition

Production

SQL1 I-11

System Development Life Cycle (continued)
Transition
Refine the prototype. Move an application into production with user acceptance testing, conversion of
existing data, and parallel operations. Make any modifications required.
Production
Roll out the system to the users. Operate the production system. Monitor its performance, and enhance and
refine the system.
Note: The various phases of the system development life cycle can be carried out iteratively. This course
focuses on the build phase of the system development life cycle.

I-11 Copyright © Oracle Corporation, 2001. All rights reserved.

System Development Life Cycle

Strategy
and

analysis
Design

Build
and

document
Transition

Production

SQL1 I-12

Storing Information
Every organization has some information needs. A library keeps a list of members, books, due dates, and
fines. A company needs to save information about employees, departments, and salaries. These pieces of
information are called data.
Organizations can store data on various media and in different formats, such as a hard-copy document in a
filing cabinet or data stored in electronic spreadsheets or in databases.
A database is an organized collection of information.
To manage databases, you need database management systems (DBMS). A DBMS is a program that stores,
retrieves, and modifies data in the database on request. There are four main types of databases:
hierarchical, network, relational, and more recently object relational.
Note: Oracle7 is a relational database management system and Oracle8, 8i, and 9i are object relational
database management systems.

I-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Storage on Different Media

Electronic
spreadsheet

Filing cabinet

Database

SQL1 I-13

Relational Model
The principles of the relational model were first outlined by Dr. E. F. Codd in a June 1970 paper called “A
Relational Model of Data for Large Shared Data Banks.” In this paper, Dr. Codd proposed the relational
model for database systems.
The more popular models used at that time were hierarchical and network, or even simple flat file data
structures. Relational database management systems (RDBMS) soon became very popular, especially for
their ease of use and flexibility in structure. In addition, a number of innovative vendors, such as Oracle,
supplemented the RDBMS with a suite of powerful application development and user products, providing a
total solution.
Components of the Relational Model

• Collections of objects or relations that store the data
• A set of operators that can act on the relations to produce other relations
• Data integrity for accuracy and consistency

For more information, see E. F. Codd, The Relational Model for Database Management Version 2
(Reading, Mass.: Addison-Wesley, 1990).

I-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Relational Database Concept

• Dr. E.F. Codd proposed the relational model for
database systems in 1970.

• It is the basis for the relational database
management system (RDBMS).

• The relational model consists of the following:
– Collection of objects or relations
– Set of operators to act on the relations
– Data integrity for accuracy and consistency

SQL1 I-14

I-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Definition of a Relational Database

A relational database is a collection of relations or
two-dimensional tables.

Oracle
server

Table Name: EMPLOYEES Table Name: DEPARTMENTS

Definition of a Relational Database
A relational database uses relations or two-dimensional tables to store information.
For example, you might want to store information about all the employees in your company. In a relational
database, you create several tables to store different pieces of information about your employees, such as an
employee table, a department table, and a salary table.

SQL1 I-15

I-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Models

Model of
system

in client’s
mind

Entity model of
client’s model

Table model
of entity model

Tables on disk

Oracle
server

Data Models
Models are a cornerstone of design. Engineers build a model of a car to work out any details before putting
it into production. In the same manner, system designers develop models to explore ideas and improve the
understanding of the database design.
Purpose of Models
Models help communicate the concepts in people’s minds. They can be used to do the following:

• Communicate
• Categorize
• Describe
• Specify
• Investigate
• Evolve
• Analyze
• Imitate

The objective is to produce a model that fits a multitude of these uses, can be understood by an end user,
and contains sufficient detail for a developer to build a database system.

SQL1 I-16

I-16 Copyright © Oracle Corporation, 2001. All rights reserved.

• Create an entity relationship diagram from
business specifications or narratives

• Scenario
– “. . . Assign one or more employees to a

department . . .”
– “. . . Some departments do not yet have assigned

employees . . .”

Entity Relationship Model

EMPLOYEE
#* number
* name
o job title

DEPARTMENT
#* number
* name
o location

assigned to

composed of

ER Modeling
In an effective system, data is divided into discrete categories or entities. An entity relationship (ER) model
is an illustration of various entities in a business and the rel ationships between them. An ER model is
derived from business specifications or narratives and built during the analysis phase of the system
development life cycle. ER models separate the information required by a business from the activities
performed within a business. Although businesses can change thei r activities, the type of information tends
to remain constant. Therefore, the data structures also tend to be constant.
Benefits of ER Modeling

• Documents information for the organization in a clear, precise format
• Provides a clear picture of the scope of the information requirement
• Provides an easily understood pictorial map for the database design
• Offers an effective framework for integrating multiple applications

Key Components
• Entity: A thing of significance about which information needs to be known. Examples are

departments, employees, and orders.
• Attribute: Something that describes or qualifies an entity. For example, for the employee entity, the

attributes would be the employee number, name, job title, hire date, department number, and so on.
Each of the attributes is either required or optional. This state is called optionality.

• Relationship: A named association between entities showing optionality and degree. Examples are
employees and departments, and orders and items.

SQL1 I-17

I-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Entity Relationship
Modeling Conventions

Entity
Soft box
Singular, unique name
Uppercase
Synonym in parentheses

Attribute
Singular name
Lowercase
Mandatory marked with “*”
Optional marked with “o”

Unique Identifier (UID)
Primary marked with “#”
Secondary marked with “(#)”

EMPLOYEE
#* number
* name
o job title

DEPARTMENT
#* number
* name
o location

assigned to

composed of

ER Modeling (continued)
Entities
To represent an entity in a model, use the following conventions:

• Soft box with any dimensions
• Singular, unique entity name
• Entity name in uppercase
• Optional synonym names in uppercase within parentheses: ()

Attributes
To represent an attribute in a model, use the following conventions:

• Use singular names in lowercase.
• Tag mandatory attributes, or values that must be known, with an asterisk: *.
• Tag optional attributes, or values that may be known, with the letter o.

Relationships
Symbol Description

Dashed line Optional element indicating “may be”

Solid line Mandatory element indicating “must be”

Crow’s foot Degree element indicating “one or more”

Single line Degree element indicating “one and only one”

SQL1 I-18

I-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Entity Relationship
Modeling Conventions

Entity
Soft box
Singular, unique name
Uppercase
Synonym in parentheses

Attribute
Singular name
Lowercase
Mandatory marked with “*”
Optional marked with “o”

Unique Identifier (UID)
Primary marked with “#”
Secondary marked with “(#)”

EMPLOYEE
#* number
* name
o job title

DEPARTMENT
#* number
* name
o location

assigned to

composed of

ER Modeling (continued)
Relationships
Each direction of the relationship contains:

• A label, for example, taught by or assigned to
• An optionality, either must be or may be
• A degree, either one and only one or one or more

Note: The term cardinality is a synonym for the term degree.
Each source entity {may be | must be} relationship name {one and only one | one or more} destination
entity.
Note: The convention is to read clockwise.
Unique Identifiers
A unique identifier (UID) is any combination of attributes or relationships, or both, that serves to distinguish
occurrences of an entity. Each entity occurrence must be uniquely identifiable.

• Tag each attribute that is part of the UID with a number symbol: #
• Tag secondary UIDs with a number sign in parentheses: (#)

SQL1 I-19

I-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Relating Multiple Tables

• Each row of data in a table is uniquely
identified by a primary key (PK).

• You can logically relate data from multiple
tables using foreign keys (FK).

Table Name: EMPLOYEES
Table Name: DEPARTMENTS

Primary key Primary keyForeign key

Relating Multiple Tables
Each table contains data that describes exactly one entity. For example, the EMPLOYEES table contains
information about employees. Categories of data are listed across the top of each table, and individual cases are
listed below. Using a table format, you can readily visualize, understand, and use information.
Because data about different entities is stored in different tables, you may need to combine two or more tables
to answer a particular question. For example, you may want to know the location of the department where an
employee works. In this scenario, you need information from the EMPLOYEES table (which contains data about
employees) and the DEPARTMENTS table (which contains information about departments). With an RDBMS
you can relate the data in one table to the data in another by using the foreign keys. A foreign key is a column
or a set of columns that refer to a primary key in the same table or another table.
You can use the ability to relate data in one table to data in another to organize information in separate,
manageable units. Employee data can be kept logically distinct from department data by storing it in a separate
table.

Guidelines for Primary Keys and Foreign Keys
• You cannot use duplicate values in a primary key.
• Primary keys generally cannot be changed.
• Foreign keys are based on data values and are purely logical, not physical, pointers.
• A foreign key value must match an existing primary key value or unique key value, or else be null.
• A foreign key must reference either a primary key or unique key column.

SQL1 I-20

I-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Relational Database Terminology

1

2 3 4

5

6

Terminology Used in a Relational Database
A relational database can contain one or many tables. A table is the basic storage structure of an RDBMS. A
table holds all the data necessary about something in the real world, such as employees, invoices, or
customers.
The slide shows the contents of the EMPLOYEES table or relation. The numbers indicate the following:

1. A single row or tuple representing all data required for a particular employee. Each row in a table
should be identified by a primary key, which allows no duplicate rows. The order of rows is
insignificant; specify the row order when the data is retrieved.

2. A column or attribute containing the employee number. The employee number identifies a unique
employee in the EMPLOYEES table. In this example, the employee number column is designated as
the primary key. A primary key must contain a value, and the value must be unique.

3. A column that is not a key value. A column represents one kind of data in a table; in the example, the
salary of all the employees. Column order is insignificant when storing data; specify the column order
when the data is retrieved.

4. A column containing the department number, which is also a foreign key. A foreign key is a column
that defines how tables relate to each other. A foreign key refers to a primary key or a unique key in
the same table or in another table. In the example, DEPARTMENT_ID uniquely identifies a
department in the DEPARTMENTS table.

5. A field may have no value in it. This is called a null value. In the EMPLOYEES table, only employees
who have a role of sales representative have a value in the COMMISSION_PCT (commission) field.

6. A field can be found at the intersection of a row and a column. There can be only one value in it.

SQL1 I-21

Properties of a Relational Database
In a relational database, you do not specify the access route to the tables, and you do not need to know how
the data is arranged physically.
To access the database, you execute a structured query language (SQL) statement, which is the American
National Standards Institute (ANSI) standard language for operating relational databases. The language
contains a large set of operators for partitioning and combining relations. The database can be modified by
using the SQL statements.

I-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Relational Database Properties

A relational database:
• Can be accessed and modified by executing

structured query language (SQL) statements
• Contains a collection of tables with no physical

pointers
• Uses a set of operators

SQL1 I-22

Structured Query Language
Using SQL, you can communicate with the Oracle server. SQL has the following advantages:

• Efficient
• Easy to learn and use
• Functionally complete (With SQL, you can define, retrieve, and manipulate data in the tables.)

I-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Communicating with a RDBMS
Using SQL

SELECT department_name
FROM departments;

SQL statement
is entered.

Oracle
server

Statement is sent to
Oracle Server.

Data is displayed.

SQL1 I-23

Relational Database Management System
Oracle provides a flexible RDBMS called Oracle9i. Using its features, you can store and manage data with
all the advantages of a relational structure plus PL/SQL, an engine that provides you with the ability to
store and execute program units. Oracle9i also supports Java and XML. The Oracle server offers the
options of retrieving data based on optimization techniques. It includes security features that control how a
database is accessed and used. Other features include consistency and protection of data through locking
mechanisms.
The Oracle9i server is an object-relational database management system that provides an open,
comprehensive, and integrated approach to information management. An Oracle server consists of an
Oracle database and an Oracle server instance. Every time a database is started, a system global area (SGA)
is allocated, and Oracle background processes are started. The system global area is an area of memory
used for database information shared by the database users. The combination of the background processes
and memory buffers is called an Oracle instance.

I-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Relational Database Management System

User tables Data
dictionary

Oracle
server

SQL1 I-24

I-24 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Statements
SELECT

INSERT
UPDATE
DELETE
MERGE
CREATE
ALTER
DROP
RENAME
TRUNCATE

COMMIT
ROLLBACK
SAVEPOINT

GRANT
REVOKE

Data retrieval

Data manipulation language (DML)

Data definition language (DDL)

Transaction control

Data control language (DCL)

SQL Statements
Oracle SQL complies with industry-accepted standards. Oracle Corporation ensures future compliance
with evolving standards by actively involving key personnel in SQL standards committees. Industry-
accepted committees are the American National Standards Institute (ANSI) and the International
Standards Organization (ISO). Both ANSI and ISO have accepted SQL as the standard language for
relational databases.

Statement Description
SELECT Retrieves data from the database
INSERT
UPDATE
DELETE
MERGE

Enters new rows, changes existing rows, and removes unwanted rows
from tables in the database, respectively. Collectively known as data
manipulation language (DML).

CREATE
ALTER
DROP
RENAME
TRUNCATE

Sets up, changes, and removes data structures from tables. Collectively
known as data definition language (DDL).

COMMIT
ROLLBACK
SAVEPOINT

Manages the changes made by DML statements. Changes to the data can
be grouped together into logical transactions.

GRANT
REVOKE

Gives or removes access rights to both the Oracle database and the
structures within it. Collectively known as data control language
(DCL).

SQL1 I-25

I-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Tables Used in the Course
EMPLOYEES

DEPARTMENTS JOB_GRADES

Tables Used in the Course
The following main tables are used in this course:
• EMPLOYEES table, which gives details of all the employees
• DEPARTMENTS table, which gives details of all the departments
• JOB_GRADES table, which gives details of salaries for various grades

Note: The structure and data for all the tables are provided in Appendix B.

SQL1 I-26

I-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

• The Oracle9i Server is the database for Internet
computing.

• Oracle9i is based on the object relational database
management system.

• Relational databases are composed of relations,
managed by relational operations, and governed
by data integrity constraints.

• With the Oracle Server, you can store and manage
information by using the SQL language and
PL/SQL engine.

Summary
Relational database management systems are composed of objects or relations. They are managed by
operations and governed by data integrity constraints.
Oracle Corporation produces products and services to meet your relational database management system
needs. The main products are the Oracle9i Database Server, with which you can store and manage
information by using SQL, and the Oracle9i Application Server with which you can run all of your
applications.
SQL
The Oracle Server supports ANSI standard SQL and contains extensions. SQL is the language used to
communicate with the server to access, manipulate, and control data.

Copyright © Oracle Corporation, 2001. All rights reserved.

Writing Basic
SQL SELECT Statements

SQL1 1-2

Lesson Aim
To extract data from the database, you need to use the structured query language (SQL) SELECT statement.
You may need to restrict the columns that are displayed. This lesson describes all the SQL statements
needed to perform these actions.
You may want to create SELECT statements that can be used more than once. This lesson also covers the
iSQL*Plus environment where you execute SQL statements.
Note: iSQL*Plus is new in the Oracle9i product. It is a browser environment where you execute SQL
commands. In prior releases of Oracle, SQL*Plus was the default environment where you executed SQL
commands. SQL*Plus is still available and is described in Appendix C.

1-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• List the capabilities of SQL SELECT statements
• Execute a basic SELECT statement

• Differentiate between SQL statements and
iSQL*Plus commands

SQL1 1-3

1-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Capabilities of SQL SELECT Statements

SelectionProjection

Table 1 Table 2

Table 1Table 1

Join

Capabilities of SQL SELECT Statements
A SELECT statement retrieves information from the database. Using a SELECT statement, you can do the
following:

• Projection: You can use the projection capability in SQL to choose the columns in a table that you
want returned by your query. You can choose as few or as many columns of the table as you require.

• Selection: You can use the selection capability in SQL to choose the rows in a table that you want
returned by a query. You can use various criteria to restrict the rows that you see.

• Joining: You can use the join capability in SQL to bring together data that is stored in different tables
by creating a link between them. You learn more about joins in a later lesson.

SQL1 1-4

Basic SELECT Statement
In its simplest form, a SELECT statement must include the following:

• A SELECT clause, which specifies the columns to be displayed
• A FROM clause, which specifies the table containing the columns listed in the SELECT clause

In the syntax:
SELECT is a list of one or more columns
* selects all columns
DISTINCT suppresses duplicates
column|expression selects the named column or the expression
alias gives selected columns different headings
FROM table specifies the table containing the columns

Note: Throughout this course, the words keyword, clause, and statement are used as follows:
• A keyword refers to an individual SQL element.

For example, SELECT and FROM are keywords.

• A clause is a part of a SQL statement.
For example, SELECT employee_id, last_name, ... is a clause.

• A statement is a combination of two or more clauses.
For example, SELECT * FROM employees is a SQL statement.

1-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Basic SELECT Statement

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

• SELECT identifies what columns
• FROM identifies which table

SQL1 1-5

Selecting All Columns of All Rows
You can display all columns of data in a table by following the SELECT keyword with an asterisk (*). In
the example on the slide, the department table contains four columns: DEPARTMENT_ID,
DEPARTMENT_NAME, MANAGER_ID, and LOCATION_ID. The table contains seven rows, one for each
department.
You can also display all columns in the table by listing all the columns after the SELECT keyword. For
example, the following SQL statement, like the example on the slide, displays all columns and all rows of
the DEPARTMENTS table:

SELECT department_id, department_name, manager_id, location_ id
FROM departments;

1-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting All Columns

SELECT *
FROM departments;

SQL1 1-6

Selecting Specific Columns of All Rows
You can use the SELECT statement to display specific columns of the table by specifying the column
names, separated by commas. The example on the slide displays all the department numbers and location
numbers from the DEPARTMENTS table.
In the SELECT clause, specify the columns that you want, in the order in whic h you want them to appear in
the output. For example, to display location before department number going from left to right, you use the
following statement:

SELECT location_id, department_id
FROM departments;

1-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Selecting Specific Columns

SELECT department_id, location_id
FROM departments;

SQL1 1-7

Writing SQL Statements
Using the following simple rules and guidelines, you can construct valid statements that are both easy to
read and easy to edit:

• SQL statements are not case sensitive, unless indicated.
• SQL statements can be entered on one or many lines.
• Keywords cannot be split across lines or abbreviated.
• Clauses are usually placed on separate lines for readability and ease of editing.
• Indents should be used to make code more readable.
• Keywords typically are entered in uppercase; all other words, such as table names and columns, are

entered in lowercase.

Executing SQL Statements
Using iSQL*Plus, click the Execute button to run the command or commands in the editing window.

1-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Writing SQL Statements

• SQL statements are not case sensitive.
• SQL statements can be on one or more lines.
• Keywords cannot be abbreviated or split

across lines.
• Clauses are usually placed on separate lines.
• Indents are used to enhance readability.

SQL1 1-8

Column Heading Defaults
In iSQL*Plus, column headings are displayed in uppercase and centered.

SELECT last_name, hire_date, salary
FROM employees;

You can override the column heading display with an alias. Column aliases are covered later in this lesson.

1-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Column Heading Defaults

• iSQL*Plus:
– Default heading justification: Center
– Default heading display: Uppercase

• SQL*Plus:
– Character and Date column headings are left-

justified
– Number column headings are right-justified
– Default heading display: Uppercase

SQL1 1-9

Arithmetic Expressions
You may need to modify the way in which data is displayed, perform calculations, or look at what-if
scenarios. These are all possible using arithmetic expressions. An arithmetic expression can contain column
names, constant numeric values, and the arithmetic operators.

Arithmetic Operators
The slide lists the arithmetic operators available in SQL. You can use arithmetic operators in any clause of
a SQL statement except in the FROM clause.

1-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Arithmetic Expressions

Create expressions with number and date data by
using arithmetic operators.

Operator

+

-

*

/

Description

Add

Subtract

Multiply

Divide

SQL1 1-10

Using Arithmetic Operators
The example in the slide uses the addition operator to calculate a salary increase of $300 for all employees
and displays a new SALARY+300 column in the output.
Note that the resultant calculated column SALARY+300 is not a new column in the EMPLOYEES table; it
is for display only. By default, the name of a new column comes from the calculation that generated it— in
this case, salary+300.

Note: The Oracle9i server ignores blank spaces before and after the arithmetic operator.

1-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Arithmetic Operators

SELECT last_name, salary, salary + 300
FROM employees;

SQL1 1-11

Operator Precedence
If an arithmetic expression contains more than one operator, multiplication and division are evaluated first.
If operators within an expression are of same priority, then evaluation is done from left to right.
You can use parentheses to force the expression within parentheses to be evaluated first.

1-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Operator Precedence

• Multiplication and division take priority over
addition and subtraction.

• Operators of the same priority are evaluated from
left to right.

• Parentheses are used to force prioritized
evaluation and to clarify statements.

* / + _

SQL1 1-12

1-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Operator Precedence

...

SELECT last_name, salary, 12*salary+100
FROM employees;

Operator Precedence (continued)
The example on the slide displays the last name, salary, and annual compensation of employees. It
calculates the annual compensation as 12 multiplied by the monthly salary, plus a one-time bonus of $100.
Notice that multiplication is performed before addition.
Note: Use parentheses to reinforce the standard order of precedence and to improve clarity. For example,
the expression on the slide can be written as (12*salary)+100 with no change in the result.

SQL1 1-13

1-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Parentheses

SELECT last_name, salary, 12*(salary+100)
FROM employees;

Using Parentheses
You can override the rules of precedence by using parentheses to specify the order in which operators are
executed.
The example on the slide displays the last name, salary, and annual compensation of employees. It
calculates the annual compensation as monthly salary plus a monthly bonus of $100, multiplied by 12.
Because of the parentheses, addition takes priority over multiplication.

SQL1 1-14

Null Values
If a row lacks the data value for a particular column, that value is said to be null, or to contain a null.
A null is a value that is unavailable, unassigned, unknown, or inapplicable. A null is not the same as zero or
a space. Zero is a number, and a space is a character.
Columns of any data type can contain nulls. However, some constraints, NOT NULL and PRIMARY KEY,
prevent nulls from being used in the column.
In the COMMISSION_PCT column in the EMPLOYEES table, notice that only a sales manager or sales
representative can earn a commission. Other employees are not entitled to earn commissions. A null
represents that fact.

1-14 Copyright © Oracle Corporation, 2001. All rights reserved.

...

Defining a Null Value

• A null is a value that is unavailable, unassigned,
unknown, or inapplicable.

• A null is not the same as zero or a blank space.

SELECT last_name, job_id, salary, commission_pct
FROM employees;

SQL1 1-15

1-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Null Values
in Arithmetic Expressions

Arithmetic expressions containing a null value
evaluate to null.
SELECT last_name, 12*salary*commission_pct
FROM employees;

Null Values (continued)
If any column value in an arithmetic expression is null, the result is null. For example, if you attempt to
perform division with zero, you get an error. However, if you divide a number by null, the result is a null or
unknown.
In the example on the slide, employee King does not get any commission. Because the
COMMISSION_PCT column in the arithmetic expression is null, the result is null .

For more information, see Oracle9i SQL Reference, “Basic Elements of SQL.”

SQL1 1-16

1-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining a Column Alias

A column alias:
• Renames a column heading
• Is useful with calculations
• Immediately follows the column name - there can

also be the optional AS keyword between the
column name and alias

• Requires double quotation marks if it contains
spaces or special characters or is case sensitive

Column Aliases

When displaying the result of a query, iSQL*Plus normally uses the name of the selected column as the
column heading. This heading may not be descriptive and hence may be difficult to understand. You can
change a column heading by using a column alias.
Specify the alias after the column in the SELECT list using a space as a separator. By default, alias
headings appear in uppercase. If the alias contains spaces or special characters (such as # or $), or is case
sensitive, enclose the alias in double quotation marks (" ").

SQL1 1-17

Column Aliases (continued)
The first example displays the names and the commission percentages of all the employees. Notice that the
optional AS keyword has been used before the column alias name. The result of the query is the same
whether the AS keyword is used or not. Also notice that the SQL statement has the column aliases, name
and comm, in lowercase, whereas the result of the query displays the column headings in uppercase. As
mentioned in a previous slide, column headings appear in uppercase by default.
The second example displays the last names and annual salaries of all the employees. Because Annual
Salary contain a space, it has been enclosed in double quotation marks. Notice that the column heading
in the output is exactly the same as the column alias.

1-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Column Aliases

SELECT last_name "Name",
salary*12 "Annual Salary"

FROM employees;

SELECT last_name AS name, commission_pct comm
FROM employees;

SQL1 1-18

Concatenation Operator
You can link columns to other columns, arithmetic expressions, or constant values to create a character
expression by using the concatenation operator (||). Columns on either side of the operator are combined to
make a single output column.

1-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Concatenation Operator

A concatenation operator:
• Concatenates columns or character strings to

other columns
• Is represented by two vertical bars (||)
• Creates a resultant column that is a character

expression

SQL1 1-19

1-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the Concatenation Operator

SELECT last_name||job_id AS "Employees"
FROM employees;

Concatenation Operator (continued)
In the example, LAST_NAME and JOB_ID are concatenated, and they are given the alias Employees.
Notice that the employee last name and job code are combined to make a single output column.
The AS keyword before the alias name makes the SELECT clause easier to read.

SQL1 1-20

Literal Character Strings
A literal is a character, a number, or a date that is included in the SELECT list and that is not a column
name or a column alias. It is printed for each row returned. Literal strings of free-format text can be
included in the query result and are treated the same as a column in the SELECT list.
Date and character literals must be enclosed within single quotation marks (' '); number literals need not.

1-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Literal Character Strings

• A literal is a character, a number, or a date
included in the SELECT list.

• Date and character literal values must be enclosed
within single quotation marks.

• Each character string is output once for each
row returned.

SQL1 1-21

Literal Character Strings (continued)
The example on the slide displays last names and job codes of all employees. The column has the heading
Employee Details. Notice the spaces between the single quotation marks in the SELECT statement. The
spaces improve the readability of the output.
In the following example, the last name and salary for each employee are concatenated with a literal to give
the returned rows more meaning.

SELECT last_name ||': 1 Month salary = '||salary Monthly
FROM employees;

1-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Literal Character Strings

SELECT last_name ||' is a '||job_id
AS "Employee Details"

FROM employees;

SQL1 1-22

1-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Duplicate Rows

The default display of queries is all rows, including
duplicate rows.

SELECT department_id
FROM employees;

Duplicate Rows
Unless you indicate otherwise, iSQL*Plus displays the results of a query without eliminating duplic ate
rows. The example on the slide displays all the department numbers from the EMPLOYEES table. Notice
that the department numbers are repeated.

SQL1 1-23

1-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Eliminating Duplicate Rows

Eliminate duplicate rows by using the DISTINCT
keyword in the SELECT clause.

SELECT DISTINCT department_id
FROM employees;

Duplicate Rows (continued)
To eliminate duplicate rows in the result, include the DISTINCT keyword in the SELECT clause
immediately after the SELECT keyword. In the example on the slide, the EMPLOYEES table actually
contains 20 rows but there are only seven unique department numbers in the table.
You can specify multiple columns after the DISTINCT qualifier. The DISTINCT qualifier affects all the
selected columns, and the result is every distinct combination of the columns.

SELECT DISTINCT department_id, job_id
FROM employees;

SQL1 1-24

SQL and iSQL*Plus
SQL is a command language for communication with the Oracle server from any tool or application. Oracle
SQL contains many extensions.
iSQL*Plus is an Oracle tool that recognizes and submits SQL statements to the Oracle server for execution
and contains its own command language.
Features of SQL

• Can be used by a range of users, including those with little or no programming experience
• Is a nonprocedural language
• Reduces the amount of time required for creating and maintaining systems
• Is an English-like language

Features of iSQL*Plus
• Accessed from a browser
• Accepts ad hoc entry of statements
• Provides online editing for modifying SQL statements
• Controls environmental settings
• Formats query results into a basic report
• Accesses local and remote databases

1-24 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL and iSQL*Plus Interaction

SQL statements
Oracle
server

Query resultsiSQL*Plus
commands

Client

Formatted report

Internet
Browser

iSQL*Plus

SQL1 1-25

SQL and iSQL*Plus (continued)
The following table compares SQL and iSQL*Plus:

1-25 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Statements Versus
iSQL*Plus Commands

SQL
statements

SQL
• A language
• ANSI standard
• Keyword cannot be

abbreviated
• Statements manipulate

data and table definitions
in the database

iSQL*Plus
• An environment
• Oracle proprietary
• Keywords can be

abbreviated
• Commands do not allow

manipulation of values in
the database

• Runs on a browser
• Centrally loaded, does not

have to be implemented
on each machine

iSQL*Plus
commands

SQL iSQL*Plus

Is a language for communicating with the Oracle
server to access data

Recognizes SQL statements and sends them to the
server

Is based on American National Standards
Institute (ANSI) standard SQL

Is the Oracle proprietary interface for executing
SQL statements

Manipulates data and table definitions in the
database

Does not allow manipulation of values in the
database

Does not have a continuation character Has a dash (-) as a continuation character if the
command is longer than one line

Cannot be abbreviated Can be abbreviated

Uses functions to perform some formatting Uses commands to format data

SQL1 1-26

iSQL*Plus
iSQL*Plus is an environment in which you can do the following:

• Execute SQL statements to retrieve, modify, add, and remove data from the database
• Format, perform calculations on, store, and print query results in the form of reports
• Create script files to store SQL statements for repetitive use in the future

iSQL*Plus commands can be divided into the following main categories:

1-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of iSQL*Plus

After you log into iSQL*Plus, you can:
• Describe the table structure
• Edit your SQL statement
• Execute SQL from iSQL*Plus
• Save SQL statements to files and append SQL

statements to files
• Execute statements stored in saved files
• Load commands from a text file into the iSQL*Plus

Edit window

Category Purpose

Environment Affects the general behavior of SQL statements for the session

Format Formats query results

File manipulation Saves statements into text script files, and runs statements from text
script files

Execution Sends SQL statements from the browser to Oracle server

Edit Modifies SQL statements in the Edit window

Interaction Allows you to create and pass variables to SQL statements, print
variable values, and print messages to the screen

Miscellaneous Has various commands to connect to the database, manipulate the
iSQL*Plus environment, and display column definitions

SQL1 1-27

1-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Logging In to iSQL*Plus

From your Windows browser environment:

Logging In to iSQL*Plus
To log in through a browser environment:

1. Start the browser.
2. Enter the URL address of the iSQL*Plus environment.
3. Fill in the username, password and Oracle Connection Identifier fields.

After you have successfully logged in to iSQL*Plus, you see the following:

SQL1 1-28

1-28 Copyright © Oracle Corporation, 2001. All rights reserved.

The iSQL*Plus Environment

3 4 5

6

71

2

8 910

The iSQL*Plus Environment
Within the Windows brower, the iSQL*Plus window has several key areas:
1. Edit window: The area where you type the SQL statements and iSQL*Plus commands.
2. Execute button: Click to execute the statements and commands in the edit window.
3. Output Option: Defaults to Work Screen, which displays the results of the SQL statement beneath the

edit window. The other options are File or Window. File saves the contents to a specified file. Window
places the output on the screen, but in a separate window.

4. Clear Screen button: Click to clear text from the edit window.
5. Save Script button: Saves the contents of the edit window to a file.
6. Script Locator: Identifies the name and location of a script file that you want to execute.
7. Browse button: Used to search for a script file using the Windows File Open dialog box.
8. Exit icon: Click to end the iSQL*Plus session and return to the iSQL*Plus LogOn window.
9. Help icon: Provides access to iSQL*Plus Help documentation.
10. Password button: Is used to change your password.

SQL1 1-29

1-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure

Use the iSQL*Plus DESCRIBE command to display
the structure of a table.

DESC[RIBE] tablename

Displaying the Table Structure
In iSQL*Plus, you can display the structure of a table using the DESCRIBE command. The command
shows the column names and data types, as well as whether a column must contain data.
In the syntax:

tablename is the name of any existing table, view, or synonym accessible to the user

SQL1 1-30

1-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Table Structure

DESCRIBE employees

Displaying the Table Structure (continued)
The example on the slide displays the information about the structure of the DEPARTMENTS table.

In the result:
Null? indicates whether a column must contain data; NOT NULL indicates that a column

must contain data
Type displays the data type for a column

The data types are described in the following table:
Data Type Description

NUMBER(p,s)

Number value having a maximum number of digits p, with s digits
to the right of the decimal point

VARCHAR2(s) Variable-length character value of maximum size s
DATE Date and time value between January 1, 4712 B.C., and December

31, 9999 A.D.

CHAR(s) Fixed-length character value of size s

SQL1 1-31

1-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Script Files

SELECT last_name, hire_date, salary
FROM employees; 1

2

Interacting with Script Files
Placing Statements and Commands into a Text Script File
You can save commands and statements from the Edit window in iSQL*Plus to a text script file as
follows:
1. Type the SQL statements into the edit window in iSQL*Plus.
2. Click the Save Script button. This opens the Windows File Save dialog box. Identify the name of the

file. It defaults to .html extension. You can change the file type to a text file or save it as a .sql file.

SQL1 1-32

1-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Script Files

1

D:\temp\emp_sql.htm

2SELECT last_name, hire_date, salary
FROM employees;

3

Interacting with Script Files
Using Statements and Commands from a Script File in iSQL*Plus
You can use previously saved commands and statements from a script file in iSQL*Plus as follows:

1. Type in the script name and location. Or, you can click the Browse button to find the script name
and location.

2. Click the Load Script button. The file contents are loaded into the iSQL*Plus edit window.
3. Click the Execute button to run the contents of the iSQL*Plus edit window.

SQL1 1-33

1-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Interacting with Script Files

DESCRIBE employees
SELECT first_name, last_name, job_id
FROM employees;

1

23

Interacting with Script Files
Saving Output to a File
You can save the results generated from a SQL statement or iSQL*Plus command to a file:

1. Type the SQL statements and iSQL*Plus commands into the edit window in iSQL*Plus.
2. Change the output option to Save.
3. Click the Execute button to run the contents of the iSQL*Plus edit window. This opens the

Windows File Save dialog box. Identify the name of the file. It defaults to a .html extension.
You can change the file type. The results are sent to the file specified.

emp_results

SQL1 1-34

1-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

In this lesson, you should have learned how to:
• Write a SELECT statement that:

– Returns all rows and columns from a table
– Returns specified columns from a table
– Uses column aliases to give descriptive column

headings

• Use the iSQL*Plus environment to write, save, and
execute SQL statements and iSQL*Plus commands.

SELECT Statement
In this lesson, you should have learned about retrieving data from a database table with the SELECT
statement.

SELECT *|{[DISTINCT] column [alias],...}
FROM table;

In the syntax:
SELECT is a list of one or more columns
* selects all columns
DISTINCT suppresses duplicates
column|expression selects the named column or the expression
alias gives selected columns different headings
FROM table specifies the table containing the columns

iSQL*Plus
iSQL*Plus is an execution environment that you can use to send SQL statements to the database server and
to edit and save SQL statements. Statements can be executed from the SQL prompt or from a script file.
Note: The SQL*Plus environment is covered in Appendix C.

SQL1 1-35

1-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice Overview

This practice covers the following topics:
• Selecting all data from different tables
• Describing the structure of tables
• Performing arithmetic calculations and specifying

column names
• Using iSQL*Plus

Practice Overview
This is the first of many practices. The solutions (if you require them) can be found in Appendix A.
Practices are intended to introduce all topics covered in the lesson. Questions 2–4 are paper-based.
In any practice, there may be “if you have time” or “if you want an extra challenge” questions. Do these
only if you have completed all other questions within the allocated time and would like a further
challenge to your skills.
Perform the practices slowly and precisely. You can experiment with saving and running command files.
If you have any questions at any time, attract the instructor’s attention.

Paper-Based Questions
For questions 2–4, circle either True or False.

SQL1 1-36

Practice 1
1. Initiate an iSQL*Plus session using the user ID and password provided by the instructor.
2. iSQL*Plus commands access the database.

True/False
3. The following SELECT statement executes successfully:

SELECT last_name, job_id, salary AS Sal
FROM employees;

True/False
4. The following SELECT statement executes successfully:

SELECT *
FROM job_grades;

True/False
5. There are four coding errors in this statement. Can you identify them?

SELECT employee_id, last_name
sal x 12 ANNUAL SALARY
FROM employees;

6. Show the structure of the DEPARTMENTS table. Select all data from the table.

SQL1 1-37

Practice 1 (continued)
7. Show the structure of the EMPLOYEES table. Create a query to display the last name, job code, hire

date, and employee number for each employee, with employee number appearing first. Provide an
alias STARTDATE for the HIRE_DATE column. Save your SQL statement to a file named
lab1_7.sql.

8. Run your query in the file lab1_7.sql.

SQL1 1-38

Practice 1 (continued)
9. Create a query to display unique job codes from the EMPLOYEES table.

If you have time, complete the following exercises:
10. Copy the statement from lab1_7.sql into the iSQL*Plus Edit window. Name the column headings

Emp #, Employee, Job, and Hire Date, respectively. Run your query again.

SQL1 1-39

Practice 1 (continued)
11. Display the last name concatenated with the job ID, separated by a comma and space, and name the

column Employee and Title.

If you want an extra challenge, complete the following exercise:
12. Create a query to display all the data from the EMPLOYEES table. Separate each column by a

comma. Name the column THE_OUTPUT.

SQL1 1-40

Copyright © Oracle Corporation, 2001. All rights reserved.

Restricting and Sorting Data

SQL1 2-2

Lesson Aim
While retrieving data from the database, you may need to restrict the rows of data that are displayed or
specify the order in which the rows are displayed. This lesson explains the SQL s tatements that you use to
perform these actions.

2-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Limit the rows retrieved by a query
• Sort the rows retrieved by a query

SQL1 2-3

2-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Limiting Rows Using a Selection

“retrieve all
employees

in department 90”

EMPLOYEES

Limiting Rows Using a Selection
In the example on the slide, assume that you want to display all the employees in department 90. The rows
with a value of 90 in the DEPARTMENT_ID column are the only ones returned. This method of restriction
is the basis of the WHERE clause in SQL.

SQL1 2-4

2-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Limiting the Rows Selected

• Restrict the rows returned by using the WHERE
clause.

• The WHERE clause follows the FROM clause.

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table
[WHERE condition(s)];

Limiting the Rows Selected
You can restrict the rows returned from the query by using the WHERE clause. A WHERE clause contains a
condition that must be met, and it directly follows the FROM clause. If the condition is true, the row meeting
the condition is returned.
In the syntax:

WHERE restricts the query to rows that meet a condition
condition is composed of column names, expressions,

constants, and a comparison operator

The WHERE clause can compare values in columns, literal values, arithmetic expressions, or functions. It
consists of three elements:

• Column name
• Comparison condition
• Column name, constant, or list of values

SQL1 2-5

2-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the WHERE Clause

SELECT employee_id, last_name, job_id, department_id
FROM employees
WHERE department_id = 90;

Using the WHERE Clause
In the example, the SELECT statement retrieves the name, job ID, and department number of all employees
whose job ID is SA_REP.
Note that the job title SA_REP has been specified in uppercase to ensure that it matches the job ID column
in the EMPLOYEES table. Character strings are case sensitive.

SQL1 2-6

Character Strings and Dates
Character strings and dates in the WHERE clause must be enclosed in single quotation marks (''). Number
constants, however, should not be enclosed in single quotation marks.
All character searches are case sensitive. In the following example, no rows are returned because the
EMPLOYEES table stores all the last names in mixed case:

SELECT last_name, job_id, department_id
FROM employees
WHERE last_name = 'GOYAL';

Oracle databases store dates in an internal numeric format, representing the century, year, month, day,
hours, minutes, and seconds. The default date display is DD-MON-RR.
Note: Changing the default date format is covered in a subsequent lesson.

2-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Character Strings and Dates

• Character strings and date values are enclosed in
single quotation marks.

• Character values are case sensitive, and date
values are format sensitive.

• The default date format is DD-MON-RR.

SELECT last_name, job_id, department_id
FROM employees
WHERE last_name = 'Goyal';

SQL1 2-7

Comparison Conditions
Comparison conditions are used in conditions that compare one expression to another value or expression.
They are used in the WHERE clause in the following format:

Syntax

... WHERE expr operator value

For Example

... WHERE hire_date='01-JAN-95'

... WHERE salary>=6000

... WHERE last_name='Smith'
An alias cannot be used in the WHERE clause.
Note: The symbol != and ^= can also represent the not equal to condition.

2-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Comparison Conditions

Operator

=

>

>=

<

<=

<>

Meaning

Equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Not equal to

SQL1 2-8

2-8 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, salary
FROM employees
WHERE salary <= 3000;

Using Comparison Conditions

Using the Comparison Conditions
In the example, the SELECT statement retrieves the last name and salary from the EMPLOYEES table,
where the employee salary is less than or equal to 3000. Note that there is an explicit value supplied to the
WHERE clause. The explicit value of 3000 is compared to the salary value in the SALARY column of the
EMPLOYEES table.

SQL1 2-9

2-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Other Comparison Conditions

Operator

BETWEEN
...AND...

IN(set)

LIKE

IS NULL

Meaning

Between two values (inclusive),

Match any of a list of values

Match a character pattern

Is a null value

SQL1 2-10

The BETWEEN Condition
You can display rows based on a range of values using the BETWEEN range condition. The range that you
specify contains a lower limit and an upper limit.
The SELECT statement on the slide returns rows from the EMPLOYEES table for any employee whose
salary is between $2,500 and $3,500.
Values specified with the BETWEEN condition are inclusive. You must specify the lower limit first .

2-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the BETWEEN Condition

Use the BETWEEN condition to display rows based on
a range of values.
SELECT last_name, salary
FROM employees
WHERE salary BETWEEN 2500 AND 3500;

Lower limit Upper limit

SQL1 2-11

2-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the IN Condition

Use the IN membership condition to test for values in
a list.
SELECT employee_id, last_name, salary, manager_id
FROM employees
WHERE manager_id IN (100, 101, 201);

The IN Condition
To test for values in a specified set of values, use the IN condition. The IN condition is also known as the
membership condition.
The slide example displays employee numbers, last names, salaries, and manager’s employee numbers for
all the employees whose manager’s employee number is 100, 101, or 201.
The IN condition can be used with any data type. The following example returns a row from the
EMPLOYEES table for any employee whose last name is included in the list of names in the WHERE clause:

SELECT employee_id, manager_id, department_id
FROM employees
WHERE last_name IN ('Hartstein', 'Vargas');

If characters or dates are used in the list, they must be enclosed in single quotation marks ('').

SQL1 2-12

The LIKE Condition

You may not always know the exact value to search for. You can select rows that match a character pattern
by using the LIKE condition. The character pattern-matching operation is referred to as a wildcard search.
Two symbols can be used to construct the search string.

The SELECT statement on the slide returns the employee first name from the EMPLOYEES table for any
employee whose first name begins with an S. Note the uppercase S. Names beginning with an s are not
returned.
The LIKE condition can be used as a shortcut for some BETWEEN comparisons. The following example
displays the last names and hire dates of all employees who joined between January 1995 and December
1995:

SELECT last_name, hire_date
FROM employees
WHERE hire_date LIKE '%95';

2-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the LIKE Condition

• Use the LIKE condition to perform wildcard
searches of valid search string values.

• Search conditions can contain either literal
characters or numbers:
– % denotes zero or many characters.
– _ denotes one character.

SELECT first_name
FROM employees
WHERE first_name LIKE 'S%';

Symbol Description

% Represents any sequence of zero or more characters

_ Represents any single character

SQL1 2-13

2-13 Copyright © Oracle Corporation, 2001. All rights reserved.

• You can combine pattern-matching characters.

• You can use the ESCAPE identifier to search for the
actual % and _ symbols.

Using the LIKE Condition

SELECT last_name
FROM employees
WHERE last_name LIKE '_o%';

Combining Wildcard Characters
The % and _ symbols can be used in any combination with literal characters. The example on the slide
displays the names of all employees whose last names have an o as the second character.

The ESCAPE Option
When you need to have an exact match for the actual % and _ characters, use the ESCAPE option. This
option specifies what the escape character is. If you want to search for strings that contain ‘SA_’, you can
use the following SQL statement:

SELECT employee_id, last_name, job_id
FROM employees
WHERE job_id LIKE '%SA_%' ESCAPE '\';

The ESCAPE option identifies the backslash (\) as the escape character. In the pattern, the escape character
precedes the underscore (_). This causes the Oracle Server to interpret the underscore literally.

SQL1 2-14

The NULL Conditions
The NULL conditions include the IS NULL condition and the IS NOT NULL condition.
The IS NULL condition tests for nulls. A null value means the value is unavailable, unassigned, unknown,
or inapplicable. Therefore, you cannot test with = because a null cannot be equal or unequal to any value.
The slide example retrieves the last names and managers of all employees who do not have a manager.
For another example, to display last name, job ID, and commission for all employees who are NOT entitled
to get a commission, use the following SQL statement:

SELECT last_name, job_id, commission_pct
FROM employees
WHERE commission_pct IS NULL;

2-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NULL Conditions

Test for nulls with the IS NULL operator.

SELECT last_name, manager_id
FROM employees
WHERE manager_id IS NULL;

SQL1 2-15

2-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Logical Conditions

Operator

AND

OR

NOT

Meaning

Returns TRUE if both component
conditions are true

Returns TRUE if either component
condition is true

Returns TRUE if the following
condition is false

Logical Conditions
A logical condition combines the result of two component conditions to produce a single result based on
them or inverts the result of a single condition. A row is returned only if the overall result of the condition
is true. Three logical operators are available in SQL:
• AND
• OR
• NOT

All the examples so far have specified only one condition in the WHERE clause. You can use several
conditions in one WHERE clause using the AND and OR operators.

SQL1 2-16

The AND Operator

In the example, both conditions must be true for any record to be selected. Therefore, only employees who
have a job title that contains the string MAN and earn more than $10,000 are selected.
All character searches are case sensitive. No rows are returned if MAN is not in uppercase. Character
strings must be enclosed in quotation marks.
AND Truth Table
The following table shows the results of combining two expressions with AND:

2-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the AND Operator

AND requires both conditions to be true.

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >=10000
AND job_id LIKE '%MAN%';

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

SQL1 2-17

2-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the OR Operator

OR requires either condition to be true.
SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >= 10000
OR job_id LIKE '%MAN%';

The OR Operator

In the example, either condition can be true for any record to be selected. Therefore, any employee who has
a job ID containing MAN or earns more than $10,000 is selected.
The OR Truth Table
The following table shows the results of combining two expressions with OR:

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

SQL1 2-18

2-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NOT Operator

SELECT last_name, job_id
FROM employees
WHERE job_id NOT IN ('IT_PROG', 'ST_CLERK', 'SA_REP');

The NOT Operator

The slide example displays the last name and job ID of all employees whose job ID is not IT_PROG,
ST_CLERK, or SA_REP.
The NOT Truth Table
The following table shows the result of applying the NOT operator to a condition:

Note: The NOT operator can also be used with other SQL operators, such as BETWEEN, LIKE, and NULL.

... WHERE job_id NOT IN ('AC_ACCOUNT', 'AD_VP')

... WHERE salary NOT BETWEEN 10000 AND 15000

... WHERE last_name NOT LIKE '%A%'

... WHERE commission_pct IS NOT NULL

NOT TRUE FALSE NULL

 FALSE TRUE NULL

SQL1 2-19

Rules of Precedence
The rules of precedence determine the order in which expressions are evaluated and calculated. The table
lists the default order of precedence. You can override the default order by using parentheses around the
expressions you want to calculate first.

2-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules of Precedence

Override rules of precedence by using parentheses.

Order Evaluated Operator
1 Arithmetic operators
2 Concatenation operator
3 Comparison conditions
4 IS [NOT] NULL, LIKE, [NOT] IN
5 [NOT] BETWEEN
6 NOT logical condition
7 AND logical condition
8 OR logical condition

SQL1 2-20

Example of the Precedence of the AND Operator

In the slide example, there are two conditions:
• The first condition is that the job ID is AD_PRES and the salary is greater than 15,000.
• The second condition is that the job ID is SA_REP.

Therefore, the SELECT statement reads as follows:

“Select the row if an employee is a president and earns more than $15,000, or if the employee is a sales
representative.”

2-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules of Precedence

SELECT last_name, job_id, salary
FROM employees
WHERE job_id = 'SA_REP'
OR job_id = 'AD_PRES'
AND salary > 15000;

SQL1 2-21

2-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules of Precedence

Use parentheses to force priority.

SELECT last_name, job_id, salary
FROM employees
WHERE (job_id = 'SA_REP'
OR job_id = 'AD_PRES')
AND salary > 15000;

Using Parentheses
In the example, there are two conditions:

• The first condition is that the job ID is AD_PRES or SA_REP.
• The second condition is that salary is greater than $15,000.

Therefore, the SELECT statement reads as follows:

“Select the row if an employee is a president or a sales representative, and if the employee earns more than
$15,000.”

SQL1 2-22

The ORDER BY Clause
The order of rows returned in a query result is undefined. The ORDER BY clause can be used to sort the
rows. If you use the ORDER BY clause, it must be the last clause of the SQL statement. You can specify an
expression, or an alias, or column position as the sort condition.
Syntax

SELECT expr
FROM table
[WHERE condition(s)]
[ORDER BY {column, expr} [ASC|DESC]];

In the syntax:
ORDER BY specifies the order in which the retrieved rows are displayed
ASC orders the rows in ascending order (this is the default order)
DESC orders the rows in descending order

If the ORDER BY clause is not used, the sort order is undefined, and the Oracle server may not fetch rows
in the same order for the same query twice. Use the ORDER BY clause to display the rows in a specific
order.

2-22 Copyright © Oracle Corporation, 2001. All rights reserved.

ORDER BY Clause

• Sort rows with the ORDER BY clause
– ASC: ascending order, default
– DESC: descending order

• The ORDER BY clause comes last in the SELECT
statement.

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date;

SQL1 2-23

2-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Sorting in Descending Order

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date DESC;

Default Ordering of Data
The default sort order is ascending:

• Numeric values are displayed with the lowest values first— for example, 1–999.

• Date values are displayed with the earliest value first— for example, 01-JAN-92 before
01-JAN-95.

• Character values are displayed in alphabetical order— for example, A first and Z last.
• Null values are displayed last for ascending sequences and first for descending sequences.

Reversing the Default Order
To reverse the order in which rows are displayed, specify the DESC keyword after the column name in the
ORDER BY clause. The slide example sorts the result by the most recently hired employee.

SQL1 2-24

2-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Sorting by Column Alias

SELECT employee_id, last_name, salary*12 annsal
FROM employees
ORDER BY annsal;

Sorting by Column Aliases
You can use a column alias in the ORDER BY clause. The slide example sorts the data by annual salary.

SQL1 2-25

2-25 Copyright © Oracle Corporation, 2001. All rights reserved.

• The order of ORDER BY list is the order of sort.

• You can sort by a column that is not in the
SELECT list.

Sorting by Multiple Columns

SELECT last_name, department_id, salary
FROM employees
ORDER BY department_id, salary DESC;

Sorting by Multiple Columns
You can sort query results by more than one column. The sort limit is the number of columns in the given
table.
In the ORDER BY clause, specify the columns, and separate the column names using commas. If you want
to reverse the order of a column, specify DESC after its name. You can also order by columns that are not
included in the SELECT clause.

Example
Display the last names and salaries of all employees. Order the result by department number, and then in
descending order by salary.

SELECT last_name, salary
FROM employees
ORDER BY department_id, salary DESC;

SQL1 2-26

Summary
In this lesson, you should have learned about restricting and sorting rows returned by the SELECT
statement. You should also have learned how to implement various operators and conditions.

2-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table
[WHERE condition(s)]
[ORDER BY {column, expr, alias} [ASC|DESC]];

In this lesson, you should have learned how to:
• Use the WHERE clause to restrict rows of output

– Use the comparison conditions
– Use the BETWEEN, IN, LIKE, and NULL conditions
– Apply the logical AND, OR, and NOT operators

• Use the ORDER BY clause to sort rows of output

SQL1 2-27

2-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 2 Overview

This practice covers the following topics:
• Selecting data and changing the order of

rows displayed
• Restricting rows by using the WHERE clause
• Sorting rows by using the ORDER BY clause

Practice 2 Overview
This practice gives you a variety of exercises using the WHERE clause and the ORDER BY clause.

SQL1 2-28

Practice 2
1. Create a query to display the last name and salary of employees earning more than $12,000.

Place your SQL statement in a text file named lab2_1.sql. Run your query.

2. Create a query to display the employee last name and department number for employee number
176.

3. Modify lab2_1.sql to display the last name and salary for all employees whose salary is not in
the range of $5,000 and $12,000. Place your SQL statement in a text file named lab2_3.sql.

SQL1 2-29

Practice 2 (continued)
4. Display the employee last name, job ID, and start date of employees hired between February 20,

1998, and May 1, 1998. Order the query in ascending order by start date.

5. Display the last name and department number of all employees in departments 20 and 50 in
alphabetical order by name.

6. Modify lab2_3.sql to list the last name and salary of employees who earn between $5,000 and
$12,000, and are in department 20 or 50. Label the columns Employee and Monthly Salary,
respectively. Resave lab2_3.sql as lab2_6.sql. Run the statement in lab2_6.sql.

SQL1 2-30

Practice 2 (continued)
7. Display the last name and hire date of every employee who was hired in 1994.

8. Display the last name and job title of all employees who do not have a manager.

9. Display the last name, salary, and commission for all employees who earn commissions. Sort
data in descending order of salary and commissions.

If you have time, complete the following exercises:

10. Display the last names of all employees where the third letter of the name is an a.

11. Display the last name of all employees who have an a and an e in their last name.

SQL1 2-31

Practice 2 (continued)
If you want an extra challenge, complete the following exercises:

12. Display the last name, job, and salary for all employees whose job is sales representative or stock
clerk and whose salary is not equal to $2,500, $3,500, or $7,000.

13. Modify lab2_6.sql to display the last name, salary, and commission for all employees whose
commission amount is 20%. Resave lab2_6.sql as lab2_13.sql. Rerun the statement in
lab2_13.sql.

SQL1 2-32

Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Functions

SQL1 3-2

Lesson Aim
Functions make the basic query block more powerful and are used to manipulate data values. This is the
first of two lessons that explore functions. It focuses on single-row character, number, and date functions,
as well as those functions that convert data from one type to another, for example, character data to numeric
data.

3-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Describe various types of functions available

in SQL
• Use character, number, and date functions in

SELECT statements

• Describe the use of conversion functions

SQL1 3-3

3-3 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Functions

Function
Input

arg 1

arg 2

arg n

Function
performs action

Output

Result
value

SQL Functions
Functions are a very powerful feature of SQL and can be used to do the following:

• Perform calculations on data
• Modify individual data items
• Manipulate output for groups of rows
• Format dates and numbers for display
• Convert column data types

SQL functions sometimes take arguments and always return a value.
Note: Most of the functions described in this lesson are specific to Oracle’s version of SQL.

SQL1 3-4

SQL Functions (continued)
There are two distinct types of functions:

• Single-row functions
• Multiple-row functions

Single-Row Functions
These functions operate on single rows only and return one result per row. There are different types of
single-row functions. This lesson covers the following ones:

• Character
• Number
• Date
• Conversion

Multiple-Row Functions
Functions can manipulate groups of rows to give one result per group of rows. These functions are known
as group functions. This is covered in a later lesson.
For more information, see Oracle9i SQL Reference for the complete list of available functions and their
syntax.

3-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Two Types of SQL Functions

Functions

Single-row
functions

Multiple-row
functions

SQL1 3-5

Single-Row Functions
Single-row functions are used to manipulate data items. They accept one or more arguments and return one
value for each row returned by the query. An argument can be one of the following:

• User-supplied constant
• Variable value
• Column name
• Expression

Features of single-row functions include:
• Acting on each row returned in the query
• Returning one result per row
• Possibly returning a data value of a different type than that referenced
• Possibly expecting one or more arguments
• Can be used in SELECT, WHERE, and ORDER BY clauses; can be nested

In the syntax:
function_name is the name of the function.
arg1, arg2 is any argument to be used by the function. This can be represented by a

column name or expression.

3-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Functions

Single row functions:
• Manipulate data items
• Accept arguments and return one value
• Act on each row returned
• Return one result per row
• May modify the data type
• Can be nested
• Accept arguments which can be a column or an

expression
function_name [(arg1, arg2,...)]

SQL1 3-6

3-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Functions

Conversion

Character

Number

Date

General
Single-row
functions

Single-Row Functions (continued)
This lesson covers the following single-row functions:

• Character functions: Αccept character input and can return both character and number values
• Number functions: Accept numeric input and return numeric values
• Date functions: Operate on values of the DATE data type (All date functions return a value of DATE

data type except the MONTHS_BETWEEN function, which returns a number.)

• Conversion functions: Convert a value from one data type to another
• General functions:

– NVL
– NVL2
– NULLIF
– COALSECE
– CASE
– DECODE

SQL1 3-7

Character Functions
Single-row character functions accept character data as input and can return both character and numeric
values. Character functions can be divided into the following:

• Case-manipulation functions
• Character-manipulation functions

Note: The functions discussed in this lesson are only some of the available functions.

Function Purpose

LOWER(column|expression) Converts alpha character values to lowercase
UPPER(column|expression) Converts alpha character values to uppercase
INITCAP(column|expression) Converts alpha character values to uppercase for the first

letter of each word, all other letters in lowercase

CONCAT(column1|expression1
,
column2|expression2)

Concatenates the first character value to the second character
value; equivalent to concatenation operator (||)

SUBSTR(column|expression,m
[,n])

Returns specified characters from character value starting at
character position m, n characters long (If m is negative, the
count starts from the end of the character value. If n is
omitted, all characters to the end of the string are returned.)

3-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Character Functions

Character
functions

LOWER
UPPER
INITCAP

CONCAT
SUBSTR
LENGTH
INSTR
LPAD | RPAD
TRIM
REPLACE

Case-manipulation
functions

Character-manipulation
functions

SQL1 3-8

Character Functions (continued)

Function Purpose

LENGTH(column|expression) Returns the number of characters in the expression

INSTR(column|expression,
‘string’, [,m], [n])

Returns the numeric position of a named string. Optionally,
you can provide a position m to start searching, and the
occurrence n of the string. m and n default to 1, meaning
start the search at the beginning of the search and report the
first occurrence.

LPAD(column|expression, n,
 'string')
RPAD(column|expression, n,
 'string')

Pads the character value right-justified to a total width of n
character positions
Pads the character value left-justified to a total width of n
character positions

TRIM(leading|trailing|both
, trim_character FROM
trim_source)

Enables you to trim heading or trailing characters (or both)
from a character string. If trim_character or
trim_source is a character literal, you must enclose it in
single quotes.
This is a feature available from Oracle8i and later.

REPLACE(text,
search_string,
replacement_string)

Searches a text expression for a character string and, if
found, replaces it with a specified replacement string

3-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Character Functions

Character
functions

LOWER
UPPER
INITCAP

CONCAT
SUBSTR
LENGTH
INSTR
LPAD | RPAD
TRIM
REPLACE

Case-manipulation
functions

Character-manipulation
functions

SQL1 3-9

Case Manipulation Functions
LOWER, UPPER, and INITCAP are the three case-conversion functions.

• LOWER: Converts mixed case or uppercase character strings to lowercase
• UPPER: Converts mixed case or lowercase character strings to uppercase
• INITCAP: Converts the first letter of each word to uppercase and remaining letters to lowercase

SELECT 'The job id for '||UPPER(last_name)||' is '
||LOWER(job_id) AS "EMPLOYEE DETAILS"

FROM employees;

3-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Function Result

Case Manipulation Functions

These functions convert case for character strings.

LOWER('SQL Course')
UPPER('SQL Course')
INITCAP('SQL Course')

sql course
SQL COURSE
Sql Course

SQL1 3-10

Case Manipulation Functions (continued)
The slide example displays the employee number, name, and department number of employee Higgens.
The WHERE clause of the first SQL statement specifies the employee name as higgens. Because all the data
in the EMPLOYEES table is stored in proper case, the name higgens does not find a match in the table, and
no rows are selected.
The WHERE clause of the second SQL statement specifies that the employee name in the EMPLOYEES table is
compared to higgens, converting the LAST_NAME column to lowercase for comparison purposes. Since
both names are lowercase now, a match is found and one row is selected. The WHERE clause can be rewritten
in the following manner to produce the same result:

...WHERE last_name = 'Higgins'

The name in the output appears as it was stored in the database. To display the name capitalized, use the
UPPER function in the SELECT statement.

SELECT employee_id, UPPER(last_name), department_id
FROM employees
WHERE INITCAP(last_name) = 'Higgins';

3-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Case Manipulation Functions

Display the employee number, name, and department
number for employee Higgens:

SELECT employee_id, last_name, department_id
FROM employees
WHERE last_name = 'higgins';
no rows selected

SELECT employee_id, last_name, department_id
FROM employees
WHERE LOWER(last_name) = 'higgins';

SQL1 3-11

Character Manipulation Functions
CONCAT, SUBSTR, LENGTH, INSTR, LPAD, RPAD, and TRIM are the character manipulation functions
covered in this lesson.
• CONCAT: Joins values together (You are limited to using two parameters with CONCAT.)
• SUBSTR: Extracts a string of determined length
• LENGTH: Shows the length of a string as a numeric value
• INSTR: Finds numeric position of a named character
• LPAD: Pads the character value right-justified
• RPAD: Pads the character value left-justified
• TRIM: Trims heading or trailing characters (or both) from a character string (If trim_character

or trim_source is a character literal, you must enclose it in single quotes.)

3-11 Copyright © Oracle Corporation, 2001. All rights reserved.

CONCAT('Hello', 'World')
SUBSTR('HelloWorld',1,5)
LENGTH('HelloWorld')
INSTR('HelloWorld', 'W')
LPAD(salary,10,'*')
RPAD(salary, 10, '*')
TRIM('H' FROM 'HelloWorld')

HelloWorld
Hello
10
6
*****24000
24000*****
elloWorld

Function Result

Character-Manipulation Functions

These functions manipulate character strings:

SQL1 3-12

3-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the Character-Manipulation
Functions

SELECT employee_id, CONCAT(first_name, last_name) NAME, job_id,
LENGTH (last_name), INSTR(last_name, 'a') "Contains 'a'?"

FROM employees
WHERE SUBSTR(job_id, 4) = 'REP';

Character-Manipulation Functions (continued)
The slide example displays employee first names and last names joined together, the length of the employee
last name, and the numeric position of the letter a in the employee last name for all employees who have the
string REP contained in the job ID starting at the fourth position of the job ID.

Example
Modify the SQL statement on the slide to display the data for those employees whose last names end with
an n.

SELECT employee_id, CONCAT(first_name, last_name) NAME,
LENGTH (last_name), INSTR(last_name, 'a') "Contains 'a'?"

FROM employees
WHERE SUBSTR(last_name, -1, 1) = 'n';

SQL1 3-13

Number Functions
Number functions accept numeric input and return numeric values. This section describes some of the
number functions.

Note: This list contains only some of the available number functions.
For more information, see Oracle9i SQL Reference, “Number Functions.”

3-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Number Functions

• ROUND: Rounds value to specified decimal
ROUND(45.926, 2) 45.93

• TRUNC: Truncates value to specified decimal
TRUNC(45.926, 2) 45.92

• MOD: Returns remainder of division
MOD(1600, 300) 100

Function Purpose

ROUND(column|expression, n) Rounds the column, expression, or value to n decimal
places, or, if n is omitted, no decimal places. (If n is
negative, numbers to left of the decimal point are rounded.)

TRUNC(column|expression,n) Truncates the column, expression, or value to n decimal
places, or, if n is omitted, then n defaults to zero

MOD(m,n) Returns the remainder of m divided by n

SQL1 3-14

3-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the ROUND Function

DUAL is a dummy table you can use to view results
from functions and calculations.

SELECT ROUND(45.923,2), ROUND(45.923,0),
ROUND(45.923,-1)

FROM DUAL;

ROUND Function
The ROUND function rounds the column, expression, or value to n decimal places. If the second argument
is 0 or is missing, the value is rounded to zero decimal places. If the second argument is 2, the value is
rounded to two decimal places. Conversely, if the second argument is -2, the value is rounded to two
decimal places to the left.
The ROUND function can also be used with date functions. You will see examples later in this lesson.
The DUAL Table
The DUAL table is owned by the user SYS and can be accessed by all users. It contains one column,
DUMMY, and one row with the value X. The DUAL table is useful when you want to return a value once
only, for instance, the value of a constant, pseudocolumn, or expression that is not derived from a table
with user data. The DUAL table is generally used for SELECT clause syntax completeness, because both
SELECT and FROM clauses are mandatory, and several calculations do not need to select from actual
tables.

SQL1 3-15

TRUNC Function
The TRUNC function truncates the column, expression, or value to n decimal places.
The TRUNC function works with arguments similar to those of the ROUND function. If the second argument
is 0 or is missing, the value is truncated to zero decimal places. If the second argument is 2, the value is
truncated to two decimal places. Conversely, if the second argument is -2, the value is truncated to two
decimal places to the left.
Like the ROUND function, the TRUNC function can be used with date functions.

3-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TRUNC Function

SELECT TRUNC(45.923,2), TRUNC(45.923),
TRUNC(45.923,-2)

FROM DUAL;

SQL1 3-16

3-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the MOD Function

Calculate the remainder of a salary after it is divided
by 5000 for all employees whose job title is sales
representative.

SELECT last_name, salary, MOD(salary, 5000)
FROM employees
WHERE job_id = 'SA_REP';

MOD Function
The MOD function finds the remainder of value1 divided by value2. The slide example calculates the
remainder of the salary after dividing it by 5,000 for all employees whose job ID is SA_REP.
Note: The MOD function is often used to determine if a value is odd or even.

SQL1 3-17

Oracle Date Format
Oracle database stores dates in an internal numeric format, representing the century, year, month, day,
hours, minutes, and seconds.
The default display and input format for any date is DD-MON-RR. Valid Oracle dates are between January
1, 4712 B.C. and December 31, 9999 A.D.
In the example in the slide, the HIRE_DATE for the employee Gietz is displayed in the default format DD-
MON-RR. However, dates are not stored in the database in this format. All the components of the date and
time are stored. So, although a HIRE_DATE such as 07-JUN-94 is displayed as day, month, and year, there
is also time and century information associated with it. The complete data might be June 7th, 1994 5:10:43
p.m.
This data is stored internally as follows:

CENTURY YEAR MONTH DAY HOUR MINUTE SECOND
19 94 06 07 5 10 43

Centuries and the Year 2000
The Oracle server is year 2000 compliant. When a record with a date column is inserted into a table, the
century information is picked up from the SYSDATE function. However, when the date column is
displayed on the screen, the century component is not displayed by default.
The DATE data type always stores year information as a four-digit number internally: two digits for the
century and two digits for the year. For example, the Oracle database stores the year as 1996 or 2001, and
not just as 96 or 01.

3-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Working with Dates

• Oracle database stores dates in an internal
numeric format: century, year, month, day, hours,
minutes, seconds.

• The default date display format is DD-MON-RR.
– Allows you to store 21st century dates in the 20th

century by specifying only the last two digits of the
year.

– Allows you to store 20th century dates in the 21st
century in the same way.

SELECT last_name, hire_date
FROM employees
WHERE last_name like 'G%';

SQL1 3-18

3-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Working with Dates

SYSDATE is a function that returns:

• Date
• Time

The SYSDATE Function
SYSDATE is a date function that returns the current database server date and time. You can use SYSDATE
just as you would use any other column name. For example, you can display the current date by selecting
SYSDATE from a table. It is customary to select SYSDATE from a dummy table called DUAL.

Example
Display the current date using the DUAL table.

SELECT SYSDATE
FROM DUAL;

SQL1 3-19

Arithmetic with Dates
Since the database stores dates as numbers, you can perform calculations using arithmetic operators such as
addition and subtraction. You can add and subtract number constants as well as dates.
You can perform the following operations:

3-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Arithmetic with Dates

• Add or subtract a number to or from a date for a
resultant date value.

• Subtract two dates to find the number of days
between those dates.

• Add hours to a date by dividing the number of
hours by 24.

Operation Result Description

date + number Date Adds a number of days to a date

date - number Date Subtracts a number of days from a date

date - date Number of days Subtracts one date from another

date + number/24 Date Adds a number of hours to a date

SQL1 3-20

3-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Arithmetic Operators
with Dates

SELECT last_name, (SYSDATE-hire_date)/7 AS WEEKS
FROM employees
WHERE department_id = 90;

Arithmetic with Dates (continued)
The example on the slide displays the last name and the number of weeks employed for all employees in
department 90. It subtracts the date on which the employee was hired from the current date (SYSDATE) and
divides the result by 7 to calculate the number of weeks that a worker has been employed.
Note: SYSDATE is a SQL function that returns the current date and time. Your results may differ from the
example.
If a more current date is subtracted from an older date, the difference is a negative number.

SQL1 3-21

Date Functions
Date functions operate on Oracle dates. All date functions return a value of DATE data type except
MONTHS_BETWEEN, which returns a numeric value.

• MONTHS_BETWEEN(date1, date2): Finds the number of months between date1 and date2.
The result can be positive or negative. If date1 is later than date2, the result is positive; if date1
is earlier than date2, the result is negative. The noninteger part of the result represents a portion of
the month.

• ADD_MONTHS(date, n): Adds n number of calendar months to date. The value of n must be
an integer and can be negative.

• NEXT_DAY(date, 'char'): Finds the date of the next specified day of the week ('char')
following date. The value of char may be a number representing a day or a character string.

• LAST_DAY(date): Finds the date of the last day of the month that contains date.
• ROUND(date[,'fmt']): Returns date rounded to the unit specified by the format model fmt.

If the format model fmt is omitted, date is rounded to the nearest day.
• TRUNC(date[, 'fmt']): Returns date with the time portion of the day truncated to the unit

specified by the format model fmt. If the format model fmt is omitted, date is truncated to the
nearest day.

This list is a subset of the available date functions. The format models are covered later in this lesson.
Examples of format models are month and year.

3-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Date Functions

Number of months
between two dates

MONTHS_BETWEEN

ADD_MONTHS

NEXT_DAY

LAST_DAY

ROUND

TRUNC

Add calendar months to
date

Next day of the date
specified

Last day of the month

Round date

Truncate date

Function Description

SQL1 3-22

Date Functions (continued)
For example, display the employee number, hire date, number of months employed, six-month review date,
first Friday after hire date, and last day of the hire month for all employees employed for fewer than 36
months.

SELECT employee_id, hire_date,
MONTHS_BETWEEN (SYSDATE, hire_date) TENURE,
ADD_MONTHS (hire_date, 6) REVIEW,
NEXT_DAY (hire_date, 'FRIDAY'), LAST_DAY(hire_date)

FROM employees
WHERE MONTHS_BETWEEN (SYSDATE, hire_date) < 36;

3-22 Copyright © Oracle Corporation, 2001. All rights reserved.

• MONTHS_BETWEEN ('01-SEP-95','11-JAN-94')

Using Date Functions

• ADD_MONTHS ('11-JAN-94',6)

• NEXT_DAY ('01-SEP-95','FRIDAY')

• LAST_DAY('01-FEB-95')

19.6774194

'11-JUL-94'

'08-SEP-95'

'28-FEB-95'

SQL1 3-23

3-23 Copyright © Oracle Corporation, 2001. All rights reserved.

• ROUND(SYSDATE,'MONTH') 01-AUG-95

• ROUND(SYSDATE ,'YEAR') 01-JAN-96

• TRUNC(SYSDATE ,'MONTH') 01-JUL-95

• TRUNC(SYSDATE ,'YEAR') 01-JAN-95

Using Date Functions

Assume SYSDATE = '25-JUL-95':

Date Functions (continued)
The ROUND and TRUNC functions can be used for number and date values. When used with dates, these
functions round or truncate to the specified format model. Therefore, you can round dates to the nearest
year or month.
Example
Compare the hire dates for all employees who started in 1997. Display the employee number, hire date, and
start month using the ROUND and TRUNC functions.

SELECT employee_id, hire_date,
ROUND(hire_date, 'MONTH'), TRUNC(hire_date, 'MONTH')

FROM employees
WHERE hire_date LIKE '%97';

SQL1 3-24

3-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 3, Part One: Overview

This practice covers the following topics:
• Writing a query that displays the current date
• Creating queries that require the use of numeric,

character, and date functions
• Performing calculations of years and months of

service for an employee

Practice 3, Part One
This practice is designed to give you a variety of exercises using different functions available for character,
number, and date data types.
Complete questions 1-5 at the end of this lesson.

SQL1 3-25

3-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Conversion Functions

Implicit data type
conversion

Explicit data type
conversion

Data type
conversion

Conversion Functions
In addition to Oracle data types, columns of tables in an Oracle9i database can be defined using ANSI,
DB2, and SQL/DS data types. However, the Oracle server internally converts such data types to Oracle8
data types.
In some cases, Oracle server uses data of one data type where it expects data of a different data type. When
this happens, Oracle server can automatically convert the data to the expected data type. This data type
conversion can be done implicitly by Oracle server, or explicitly by the user.
Implicit data type conversions work according to the rules explained in the next two slides.
Explicit data type conversions are done by using the conversion functions. Conversion functions convert a
value from one data type to another. Generally, the form of the function names follows the convention
data type TO data type. The first data type is the input data type; the last data type is the output.

Note: Although implicit data type conversion is available, it is recommended that you do explicit data type
conversion to ensure the reliability of your SQL statements.

SQL1 3-26

3-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Implicit Data Type Conversion

For assignments, the Oracle server can automatically
convert the following:

VARCHAR2 or CHAR

From To

VARCHAR2 or CHAR

NUMBER

DATE

NUMBER

DATE

VARCHAR2

VARCHAR2

Implicit Data Type Conversion
The assignment succeeds if the Oracle server can convert the data type of the value used in the assignment
to that of the assignment target.

SQL1 3-27

3-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Implicit Data Type Conversion

For expression evaluation, the Oracle Server can
automatically convert the following:

VARCHAR2 or CHAR

From To

VARCHAR2 or CHAR

NUMBER

DATE

Implicit Data Type Conversion
In general, the Oracle server uses the rule for expressions when a data type conversion is needed in places
not covered by a rule for assignment conversions.
Note: CHAR to NUMBER conversions succeed only if the character string represents a valid number.

SQL1 3-28

Explicit data type Conversion
SQL provides three functions to convert a value from one data type to another:

3-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Data Type Conversion

NUMBER CHARACTER

TO_CHAR

TO_NUMBER

DATE

TO_CHAR

TO_DATE

Function Purpose

TO_CHAR(number|date,[fmt],
[nlsparams]) Converts a number or date value to a VARCHAR2

character string with format model fmt.

Number Conversion: The nlsparams parameter
specifies the following characters, which are returned
by number format elements:

• Decimal character

• Group separator

• Local currency symbol

• International currency symbol

If nlsparams or any other parameter is omitted, this
function uses the default parameter values for the
session.

SQL1 3-29

Explicit data type Conversion (continued)

3-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Data Type Conversion

NUMBER CHARACTER

TO_CHAR

TO_NUMBER

DATE

TO_CHAR

TO_DATE

Function Purpose

TO_CHAR(number|date,[fmt],
[nlsparams]) Date Conversion: The nlsparams parameter

specifies the language in which month and day names
and abbreviations are returned. If this parameter is
omitted, this function uses the default date languages
for the session.

TO_NUMBER(char,[fmt],
[nlsparams]) Converts a character string containing digits to a

number in the format specified by the optional
format model fmt.

The nlsparams parameter has the same purpose
in this function as in the TO_CHAR function for
number conversion.

TO_DATE(char,[fmt],[nlsparams]) Converts a character string representing a date to a
date value according to the fmt specified. If fmt is
omitted, the format is DD-MON-YY.

The nlsparams parameter has the same purpose
in this function as in the TO_CHAR function for date
conversion.

SQL1 3-30

Explicit Data Type Conversion (continued)
Note: The list of functions mentioned in this lesson includes only so me of the available conversion
functions.
For more information, see Oracle9i SQL Reference, “Conversion Functions.”

SQL1 3-31

3-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Dates

The format model:
• Must be enclosed in single quotation marks and is case

sensitive
• Can include any valid date format element
• Has an fm element to remove padded blanks or

suppress leading zeros
• Is separated from the date value by a comma

TO_CHAR(date, 'format_model')

Displaying a Date in a Specific Format
Previously, all Oracle date values were displayed in the DD-MON-YY format. You can use the TO_CHAR
function to convert a date from this default format to one specified by you.
Guidelines

• The format model must be enclosed in single quotation marks and is case sensitive.
• The format model can include any valid date format element. Be sure to separate the date value from

the format model by a comma.
• The names of days and months in the output are automatically padded with blanks.
• To remove padded blanks or to suppress leading zeros, use the fill mode fm element.
• You can format the resulting character field with the iSQL*Plus COLUMN command covered in a later

lesson.

SELECT employee_id, TO_CHAR(hire_date, 'MM/YY') Month_Hired
FROM employees
WHERE last_name = 'Higgins';

SQL1 3-32

3-32 Copyright © Oracle Corporation, 2001. All rights reserved.

YYYY

Elements of the Date Format Model

YEAR

MM

MONTH

DY

DAY

Full year in numbers

Year spelled out

Two-digit value for month

Three-letter abbreviation of the
day of the week
Full name of the day of the week

Full name of the month

MON
Three-letter abbreviation of the
month

DD Numeric day of the month

SQL1 3-33

Sample Format Elements of Valid Date Formats

Element Description

SCC or CC Century; server prefixes B.C. date with -

Years in dates YYYY or SYYYY Year; server prefixes B.C. date with -

YYY or YY or Y Last three, two, or one digits of year

Y,YYY Year with comma in this position

IYYY, IYY, IY, I Four, three, two, or one digit year based on the ISO standard

SYEAR or YEAR Year spelled out; server prefixes B.C. date with -

BC or AD B.C./.D. indicator

B.C. or A.D. B.C./A.D. indicator with periods

Q Quarter of year

MM Month: two-digit value

MONTH Name of month padded with blanks to length of nine characters

MON Name of month, three-letter abbreviation

RM Roman numeral month

WW or W Week of year or month

DDD or DD or D Day of year, month, or week

DAY Name of day padded with blanks to a length of nine characters

DY Name of day; three-letter abbreviation

J Julian day; the number of days since 31 December 4713 B.C.

SQL1 3-34

Date Format Elements - Time Formats
Use the formats listed in the following tables to display time information and literals and to change
numerals to spelled numbers.

Element Description

AM or PM Meridian indicator

A.M. or P.M. Meridian indicator with periods

HH or HH12 or HH24 Hour of day, or hour (1–12), or hour (0–23)

MI Minute (0–59)

SS Second (0–59)

SSSSS Seconds past midnight (0–86399)

3-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Elements of the Date Format Model

• Time elements format the time portion of the date.

• Add character strings by enclosing them in double
quotation marks.

• Number suffixes spell out numbers.

HH24:MI:SS AM 15:45:32 PM

DD "of" MONTH 12 of OCTOBER

ddspth fourteenth

SQL1 3-35

Other Formats

Specifying Suffixes to Influence Number Display

Element Description

/ . , Punctuation is reproduced in the result

“of the” Quoted string is reproduced in the result

Element Description

TH Ordinal number (for example, DDTH for 4TH)

SP Spelled-out number (for example, DDSP for FOUR)

SPTH or THSP Spelled-out ordinal numbers (for example, DDSPTH for
FOURTH)

SQL1 3-36

The TO_CHAR Function with Dates

The SQL statement on the slide displays the last names and hire dates for all the employees. The hire date
appears as 17 June 1987.
Example
Modify the slide example to display the dates in a format that appears as Seventh of June 1994 12:00:00
AM.

SELECT last_name,
TO_CHAR(hire_date,

'fmDdspth "of" Month YYYY fmHH:MI:SS AM')
HIREDATE

FROM employees;

Notice that the month follows the format model specified: in other words, the first letter is capitalized and
the rest are lowercase.

3-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Dates

SELECT last_name,
TO_CHAR(hire_date, 'fmDD Month YYYY') HIREDATE

FROM employees;

SQL1 3-37

3-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with
Numbers

These are some of the format elements you can use
with the TO_CHAR function to display a number value
as a character:

TO_CHAR(number, 'format_model')

9
0

$

L

.
,

Represents a number
Forces a zero to be displayed

Places a floating dollar sign

Uses the floating local currency symbol

Prints a decimal point

Prints a thousand indicator

The TO_CHAR Function with Numbers

When working with number values such as character strings, you should convert those numbers to the
character data type using the TO_CHAR function, which translates a value of NUMBER data type to
VARCHAR2 data type. This technique is especially useful with concatenati on.

Number Format Elements
If you are converting a number to the character data type, you can use the following format elements:

Element Description Example Result

9 Numeric position (number of 9s determine display
width)

999999 1234

0 Display leading zeros 099999 001234

$ Floating dollar sign $999999 $1234

L Floating local currency symbol L999999 FF1234

. Decimal point in position specified 999999.99 1234.00

, Comma in position specified 999,999 1,234

MI Minus signs to right (negative values) 999999MI 1234-

PR Parenthesize negative numbers 999999PR <1234>

EEEE Scientific notation (format must specify four Es) 99.999EEEE 1.234E+03

V Multiply by 10 n times (n = number of 9s after V) 9999V99 123400

B Display zero values as blank, not 0 B9999.99 1234.00

SQL1 3-38

Guidelines
• The Oracle server displays a string of hash signs (#) in place of a whole number whose digits exceed

the number of digits provided in the format model.
• The Oracle server rounds the stored decimal value to the number of decimal spaces provided in the

format model.

3-38 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_CHAR Function with Numbers

SELECT TO_CHAR(salary, '$99,999.00') SALARY
FROM employees
WHERE last_name = 'Ernst';

SQL1 3-39

The TO_NUMBER and TO_DATE Functions

You may want to convert a character string to either a number or a date. To accomplish this task, use the
TO_NUMBER or TO_DATE functions. The format model you choose is based on the previously
demonstrated format elements.
The “fx” modifier specifies exact matching for the character argument and date format model of a
TO_DATE function:

• Punctuation and quoted text in the character argument must exactly match (except for case) the
corresponding parts of the format model.

• The character argument cannot have extra blanks. Without fx, Oracle ignores extra blanks.

• Numeric data in the character argument must have the same number of digits as the corresponding
element in the format model. Without fx, numbers in the character argument can omit leading zeroes.

Example
Display the names and hire dates of all the employees who joined on May 24, 1999. Because the fx
modifier is used, an exact match is required and the spaces after the word ‘May’ are not recognized.

SELECT last_name, hire_date
FROM employees
WHERE hire_date = TO_DATE('May 24, 1999', 'fxMonth DD, YYYY')

3-39 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TO_NUMBER and TO_DATE
Functions

• Convert a character string to a number format
using the TO_NUMBER function:

• Convert a character string to a date format using
the TO_DATE function:

• These functions have an fx modifier. This modifier
specifies the exact matching for the character
argument and date format model of a TO_DATE
function

TO_NUMBER(char[, 'format_model'])

TO_DATE(char[, 'format_model'])

SQL1 3-40

The RR Date Format Element
The RR date format is similar to the YY element, but you can use it to specify different centuries. You can
use the RR date format element instead of YY, so that the century of the return value varies according to
the specified two-digit year and the last two digits of the current year. The table on the slide summarizes the
behavior of the RR element.

Current Year Given Date Interpreted (RR) Interpreted (YY)

1994 27-OCT-95 1995 1995

1994 27-OCT-17 2017 1917

2001 27-OCT-17 2017 2017

3-40 Copyright © Oracle Corporation, 2001. All rights reserved.

RR Date Format

Current Year
1995
1995
2001
2001

Specified Date
27-OCT-95
27-OCT-17
27-OCT-17
27-OCT-95

RR Format
1995
2017
2017
1995

YY Format
1995
1917
2017
2095

If two digits
of the
current
year are:

0–49

0–49 50–99

50–99

The return date is in
the current century

The return date is in
the century after
the current one

The return date is in
the century before
the current one
The return date is in
the current century

If the specified two-digit year is:

SQL1 3-41

3-41 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of RR Date Format

To find employees hired prior to 1990, use the RR
format, which produces the same results whether the
command is run in 1999 or now:

SELECT last_name, TO_CHAR(hire_date, 'DD-Mon-YYYY')
FROM employees
WHERE hire_date < TO_DATE('01-Jan-90', 'DD-Mon-RR');

The RR Date Format Element Example
To find employees who were hired prior to 1990, the RR format can be used. Since the year is now greater
than 1999, the RR format interprets the year portion of the date from 1950 to 1999.
The following command, on the other hand, results in no rows being selected because the YY format
interprets the year portion of the date in the current century (2090).

SELECT last_name, TO_CHAR(hire_date, 'DD-Mon-yyyy')
FROM employees
WHERE TO_DATE(hire_date, 'DD-Mon-yy') < '01-Jan-1990';

no rows selected

SQL1 3-42

3-42 Copyright © Oracle Corporation, 2001. All rights reserved.

Nesting Functions

• Single-row functions can be nested to any level.
• Nested functions are evaluated from deepest level

to the least deep level.

F3(F2(F1(col,arg1),arg2),arg3)

Step 1 = Result 1

Step 2 = Result 2

Step 3 = Result 3

Nesting Functions
Single-row functions can be nested to any depth. Nested functions are evaluated from the innermost level to
the outermost level. Some examples follow to show you the flexibility of these functions.

SQL1 3-43

3-43 Copyright © Oracle Corporation, 2001. All rights reserved.

Nesting Functions

SELECT last_name,
NVL(TO_CHAR(manager_id), 'No Manager')

FROM employees
WHERE manager_id IS NULL;

Nesting Functions (continued)
The slide example displays the head of the company, who has no manager. The evaluation of the SQL
statement involves two steps:

1. Evaluate the inner function to convert a number value to a character string.
– Result1 = TO_CHAR(manager_id)

2. Evaluate the outer function to replace the null value with a text string.
– NVL(Result1, 'No Manager')

The entire expression becomes the column heading because no column alias was given.
Example
Display the date of the next Friday that is six months from the hire date. The resulting date should appear as
Friday, August 13th, 1999. Order the results by hire date.

SELECT TO_CHAR(NEXT_DAY(ADD_MONTHS
(hire_date, 6), 'FRIDAY'),
'fmDay, Month DDth, YYYY')
"Next 6 Month Review"

FROM employees
ORDER BY hire_date;

SQL1 3-44

3-44 Copyright © Oracle Corporation, 2001. All rights reserved.

General Functions

These functions work with any data type and pertain
to using nulls.
• NVL (expr1, expr2)
• NVL2 (expr1, expr2, expr3)
• NULLIF (expr1, expr2)
• COALESCE (expr1, expr2, ..., exprn)

General Functions
These functions work with any data type and pertain to the use of null values in the expression list.

Note: For more information on the hundreds of functions available, see Oracle9i SQL Reference,
“Functions.”

Function Description

NVL Converts a null value to an actual value

NVL2 If expr1 is not null, NVL2 returns expr2. If expr1 is null, NVL2
returns expr3. The argument expr1can have any data type.

NULLIF Compares two expressions and returns null if they are equal, or the first
expression if they are not equal

COALESCE Returns the first non-null expression in the expression list

SQL1 3-45

3-45 Copyright © Oracle Corporation, 2001. All rights reserved.

NVL Function

Converts a null to an actual value.
• Data types that can be used are date, character,

and number.
• Data types must match:

– NVL(commission_pct,0)
– NVL(hire_date,'01-JAN-97')
– NVL(job_id,'No Job Yet')

The NVL Function
To convert a null value to an actual value, use the NVL function.

Syntax
NVL (expr1, expr2)

In the syntax:
expr1 is the source value or expression that may contain a null
expr2 is the target value for converting the null

You can use the NVL function to convert any data type, but the return value is always the same as the
data type of expr1.
NVL Conversions for Various Data Types

Data Type Conversion Example

NUMBER NVL(number_column,9)

DATE NVL(date_column, '01-JAN-95')

CHAR or VARCHAR2 NVL(character_column, 'Unavailable')

SQL1 3-46

The NVL Function

To calculate the annual compensation of all employees, you need to multiply the monthly salary by 12 and
then add the commission percentage to it.

SELECT last_name, salary, commission_pct,
(salary*12) + (salary*12*commission_pct) AN_SAL

FROM employees;

Notice that the annual compensation is calculated only for those employees who earn a commission. If any
column value in an expression is null, the result is null. To calculate values for all employees, you must
convert the null value to a number before applying the arithmetic operator. In the example on the slide, the
NVL function is used to convert null values to zero.

3-46 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NVL Function

SELECT last_name, salary, NVL(commission_pct, 0),
(salary*12) + (salary*12*NVL(commission_pct, 0)) AN_SAL

FROM employees;

SQL1 3-47

3-47 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name, salary, commission_pct,
NVL2(commission_pct,

'SAL+COMM', 'SAL') income
FROM employees WHERE department_id IN (50, 80);

Using the NVL2 Function

The NVL2 Function
The NVL2 function examines the first expression. If the first expression is not null, then the NVL2 function
returns the second expression. If the first expression is null, then the third expression is returned.
Syntax

NVL(expr1, expr2, expr3)

In the syntax:
expr1 is the source value or expression that may contain null
expr2 is the value returned if expr1 is not null
expr3 is the value returned if expr2 is null

In the example shown, the COMMISSION_PCT column is examined. If a value is detected, the second
expression of SAL+COMM is returned. If the COMMISSION_PCT column holds a null values, the third
expression of SAL is returned.
The argument expr1 can have any data type. The arguments expr2 and expr3 can have any data types
except LONG. If the data types of expr2 and expr3 are different, The Oracle server converts expr3 to
the data type of expr2 before comparing them unless expr3 is a null constant. In that case, a data type
conversion is not necessary.
The data type of the return value is always the same as the data type of expr2, unless expr2 is character
data, in which case the return value’s data type is VARCHAR2.

SQL1 3-48

3-48 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the NULLIF Function

SELECT first_name, LENGTH(first_name) "expr1",
last_name, LENGTH(last_name) "expr2",
NULLIF(LENGTH(first_name), LENGTH(last_name)) result

FROM employees;

The NULLIF Function
The NULLIF function compares two expressions. If they are equal, the function returns null. If they are not
equal, the function returns the first expression. You cannot specify the literal NULL for first expression.
Syntax

NULLIF (expr1, expr2)

In the syntax:
expr1 is the source value compared to expr2
expr2 is the source value compared with expr1. (If it is not equal to expr1, expr1

is returned.)
In the example shown, the job ID in the EMPLOYEES table is compared to the job ID in the
JOB_HISTORY table for any employee who is in both tables. The output shows the employee’s current
job. If the employee is listed more than once, that means the employee has held at least two jobs
previously.
Note: The NULLIF function is logically equivalent to the following CASE expression. The CASE
expression is discussed in a subsequent page:

CASE WHEN expr1 = expr 2 THEN NULL ELSE expr1 END

SQL1 3-49

3-49 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COALESCE Function

• The advantage of the COALESCE function over the
NVL function is that the COALESCE function can
take multiple alternate values.

• If the first expression is not null, it returns that
expression; otherwise, it does a COALESCE of the
remaining expressions.

The COALESCE Function
The COALESCE function returns the first non-null expression in the list.

Syntax
COALESCE (expr1, expr2, ... exprn)

In the syntax:
expr1 returns this expression if it is not null
expr2 returns this expression if the first expression is null and this expression is not

null
exprn returns this expression if the preceding expressions are null

SQL1 3-50

3-50 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT last_name,
COALESCE(commission_pct, salary, 10) comm

FROM employees
ORDER BY commission_pct;

Using the COALESCE Function

The COALESCE Function
In the example shown, if the COMMISSION_PCT value is not null, it is shown. If the COMMISSION_PCT
value is null, then the SALARY is shown. If the COMMISSION_PCT and SALARY values are null, then the
value 10 is shown.

SQL1 3-51

3-51 Copyright © Oracle Corporation, 2001. All rights reserved.

Conditional Expressions

• Provide the use of IF-THEN-ELSE logic within a
SQL statement

• Use two methods:
– CASE expression
– DECODE function

Conditional Expressions
Two methods used to implement conditional processing (IF-THEN-ELSE logic) within a SQL statement
are the CASE expression and the DECODE function.
Note: The CASE expression is new in the Oracle9i Server release. The CASE expression complies with
ANSI SQL; DECODE is specific to Oracle syntax.

SQL1 3-52

3-52 Copyright © Oracle Corporation, 2001. All rights reserved.

The CASE Expression

Facilitates conditional inquiries by doing the work of
an IF-THEN-ELSE statement:

CASE expr WHEN comparison_expr1 THEN return_expr1
[WHEN comparison_expr2 THEN return_expr2
WHEN comparison_exprn THEN return_exprn
ELSE else_expr]

END

The CASE Expression
CASE expressions let you use IF-THEN-ELSE logic in SQL statements without having to invoke
procedures.
In a simple CASE expression, Oracle searches for the first WHEN ... THEN pair for which expr is equal
to comparison_expr and returns return_expr. If none of the WHEN ... THEN pairs meet this
condition, and an ELSE clause exists, then Oracle returns else_expr. Otherwise, Oracle returns null.
You cannot specify the literal NULL for all the return_exprs and the else_expr.
All of the expressions (expr, comparison_expr, and return_expr) must be of the same data type,
which can be CHAR, VARCHAR2, NCHAR, or NVARCHAR2.

SQL1 3-53

3-53 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the CASE Expression

Facilitates conditional inquiries by doing the work of
an IF-THEN-ELSE statement:

SELECT last_name, job_id, salary,
CASE job_id WHEN 'IT_PROG' THEN 1.10*salary

WHEN 'ST_CLERK' THEN 1.15*salary
WHEN 'SA_REP' THEN 1.20*salary

ELSE salary END "REVISED_SALARY"
FROM employees;

Using the CASE Expression
In the preceding SQL statement, the value of JOB_ID is decoded. If JOB_ID is IT_PROG, the salary
increase is 10%; if JOB_ID is ST_CLERK, the salary increase is 15%; if JOB_ID is SA_REP, the salary
increase is 20%. For all other job roles, there is no increase in salary.
The same statement can be written with the DECODE function.

SQL1 3-54

3-54 Copyright © Oracle Corporation, 2001. All rights reserved.

The DECODE Function

Facilitates conditional inquiries by doing the work of
a CASE or IF-THEN-ELSE statement:

DECODE(col|expression, search1, result1
[, search2, result2,...,]
[, default])

The DECODE Function
The DECODE function decodes an expression in a way similar to the IF-THEN-ELSE logic used in various
languages. The DECODE function decodes expression after comparing it to each search value. If the
expression is the same as search, result is returned.

If the default value is omitted, a null value is returned where a search value does not match any of the result
values.

SQL1 3-55

3-55 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DECODE Function

SELECT last_name, job_id, salary,
DECODE(job_id, 'IT_PROG', 1.10*salary,

'ST_CLERK', 1.15*salary,
'SA_REP', 1.20*salary,

salary)
REVISED_SALARY

FROM employees;

Using the DECODE Function
In the preceding SQL statement, the value of JOB_ID is tested. If JOB_ID is IT_PROG, the salary
increase is 10%; if JOB_ID is ST_CLERK, the salary increase is 15%; if JOB_ID is SA_REP, the salary
increase is 20%. For all other job roles, there is no increase in salary.
The same statement can be expressed in pseudocode as an IF-THEN-ELSE statement:

IF job_id = 'IT_PROG' THEN salary = salary*1.10
IF job_id = 'ST_CLERK' THEN salary = salary*1.15
IF job_id = 'SA_REP' THEN salart = salary*1.20
ELSE salary = salary

SQL1 3-56

3-56 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DECODE Function

SELECT last_name, salary,
DECODE (TRUNC(salary/2000, 0),

0, 0.00,
1, 0.09,
2, 0.20,
3, 0.30,
4, 0.40,
5, 0.42,
6, 0.44,

0.45) TAX_RATE
FROM employees
WHERE department_id = 80;

Display the applicable tax rate for each employee in
department 80.

Example
This slide shows another example using the DECODE function. In this example, we determine the tax rate
for each employee in department 80 based on the monthly salary. The tax rates are as per the values
mentioned in the following data.

Monthly Salary Range Rate
$0.00 - 1999.99 00%
$2,000.00 - 3,999.99 09%
$4,000.00 - 5,999.99 20%
$6,000.00 - 7,999.99 30%
$8,000.00 - 9,999.99 40%
$10,000.00 - 11,999.99 42%
$12,200.00 - 13,999.99 44%
$14,000.00 or greater 45%

SQL1 3-57

Single-Row Functions
Single-row functions can be nested to any level. Single-row functions can manipulate the following:

• Character data: LOWER, UPPER, INITCAP, CONCAT, SUBSTR, INSTR, LENGTH
• Number data: ROUND, TRUNC, MOD
• Date data: MONTHS_BETWEEN, ADD_MONTHS, NEXT_DAY, LAST_DAY, ROUND, TRUNC
• Date values can also use arithmetic operators.
• Conversion functions can convert character, date, and numeric values: TO_CHAR, TO_DATE,

TO_NUMBER
• There are several functions that pertain to nulls, including NVL, NVL2, NULLIF, and COALESCE.
• IF-THEN-ELSE logic can be applied within a SQL statement by using the CASE expression or the

DECODE function.
SYSDATE and DUAL
SYSDATE is a date function that returns the current date and time. It is customary to select SYSDATE from
a dummy table called DUAL.

3-57 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Perform calculations on data using functions
• Modify individual data items using functions
• Manipulate output for groups of rows using

functions
• Alter date formats for display using functions
• Convert column data types using functions
• Use NVL functions
• Use IF-THEN-ELSE logic

SQL1 3-58

3-58 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 3, Part Two: Overview

This practice covers the following topics:
• Creating queries that require the use of numeric,

character, and date functions
• Using concatenation with functions
• Writing case-insensitive queries to test the

usefulness of character functions
• Performing calculations of years and months of

service for an employee
• Determining the review date for an employee

Practice 3, Part Two
This practice is designed to give you a variety of exercises using different functions available for
character, number, and date data types.
Remember that for nested functions, the results are evaluated from the innermost function to the outermost
function.

SQL1 3-59

Practice 3 - Part One
1. Write a query to display the current date. Label the column Date.

2. For each employee, display the employee number, last_name, salary, and salary increased by 15%
and expressed as a whole number. Label the column New Salary. Place your SQL statement in a
text file named lab3_2.sql.

3. Run your query in the file lab3_2.sql.

4. Modify your query lab3_2.sql to add a column that subtracts the old salary from
the new salary. Label the column Increase. Save the contents of the file as lab3_4.sql. Run
the revised query.

SQL1 3-60

Practice 3, Part One: Overview (continued)
5. Write a query that displays the employee’s last names with the f irst letter capitalized and all other

letters lowercase, and the length of the names, for all employees whose name starts with J, A, or M.
Give each column an appropriate label. Sort the results by the employees’ last names.

SQL1 3-61

Practice 3 - Part Two

6. For each employee, display the employee’s last name, and calculate the number of months between
today and the date the employee was hired. Label the column MONTHS_WORKED. Order your results
by the number of months employed. Round the number of months up to the closest whole number.
Note: Your results will differ.

SQL1 3-62

Practice 3 - Part Two (continued)
7. Write a query that produces the following for each employee:

<employee last name> earns <salary> monthly but wants <3 times
salary>. Label the column Dream Salaries.

If you have time, complete the following exercises:
8. Create a query to display the last name and salary for all employees. Format the salary to be 15

characters long, left-padded with $. Label the column SALARY.

SQL1 3-63

Practice 3 - Part Two (continued)

9. Display each employee’s last name, hire date, and salary review date, which is the first Monday after
six months of service. Label the column REVIEW. Format the dates to appear in the format similar to
“Monday, the Thirty-First of July, 2000.”

10. Display the last name, hire date, and day of the week on which the employee started. Label
the column DAY. Order the results by the day of the week starting with Monday.

SQL1 3-64

Practice 3 - Part Two (continued)
If you want an extra challenge, complete the following exercises:

11. Create a query that displays the employees’ last names and commission amounts. If an employee
does not earn commission, put “No Commission.” Label the column COMM.

12. Create a query that displays the employees’ last names and indicates the amounts of their annual
salaries with asterisks. Each asterisk signifies a thousand doll ars. Sort the data in descending order of
salary. Label the column EMPLOYEES_AND_THEIR_SALARIES .

SQL1 3-65

Practice 3 - Part Two (continued)
13. Using the DECODE function, write a query that displays the grade of all employees based on the value

of the column JOB_ID, as per the following data:

Job Grade
AD_PRES A
ST_MAN B
IT_PROG C
SA_REP D
ST_CLERK E
None of the above 0

14. Rewrite the statement in the preceding question using the CASE syntax.

SQL1 3-66

Copyright © Oracle Corporation, 2001. All rights reserved.

Displaying Data
from Multiple Tables

SQL1 4-2

Lesson Aim
This lesson covers how to obtain data from more than one table.

4-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Write SELECT statements to access data from

more than one table using equality and
nonequality joins

• View data that generally does not meet a join
condition by using outer joins

• Join a table to itself by using a self join

SQL1 4-3

Data from Multiple Tables
Sometimes you need to use data from more than one table. In the slide example, the report displays data
from two separate tables.

• Employee IDs exist in the EMPLOYEES table.
• Department IDs exist in both the EMPLOYEES and DEPARTMENTS tables.
• Location IDs exist in the DEPARTMENTS table.

To produce the report, you need to link the EMPLOYEES and DEPARTMENTS tables and access data from
both of them.

4-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Obtaining Data from Multiple Tables
EMPLOYEES DEPARTMENTS

SQL1 4-4

Cartesian Products
When a join condition is invalid or omitted completely, the result is a Cartesian product, in which all
combinations of rows are displayed. All rows in the first table are joined to all rows in the second table.
A Cartesian product tends to generate a large number of rows, and the result is rarely useful. You should
always include a valid join condition in a WHERE clause, unless you have a specific need to combine all
rows from all tables.
Cartesian products are useful for some tests when you need to generate a large number of rows to simulate
a reasonable amount of data.

4-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Cartesian Products

• A Cartesian product is formed when:
– A join condition is omitted
– A join condition is invalid
– All rows in the first table are joined to all rows in the

second table

• To avoid a Cartesian product, always include a
valid join condition in a WHERE clause.

SQL1 4-5

Cartesian Products (continued)
A Cartesian product is generated if a join condition is omitted. The example on the slide displays employee
last name and department name from the EMPLOYEES and DEPARTMENTS tables. Because no WHERE
clause has been specified, all rows (20 rows) from the EMPLOYEES table are joined with all rows (8 rows)
in the DEPARTMENTS table, thereby generating 160 rows in the output.

SELECT last_name, department_name dept_name
FROM employees, departments;

4-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Generating a Cartesian Product

Cartesian
product:

20x8=160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

SQL1 4-6

Types of Joins
The Oracle9i database offers join syntax that is SQL: 1999 compliant. Prior to the 9i release, the join syntax
was different from the ANSI standards. The new SQL: 1999 compliant join syntax does not offer any
performance benefits over the Oracle proprietary join syntax that existed in prior releases.

4-6 Copyright © Oracle Corporation, 2001. All rights reserved.

• Equijoin
• Non-equijoin
• Outer join
• Self join

Types of Joins

• Cross joins
• Natural joins
• Using clause
• Full or two sided outer

joins
• Arbitrary join conditions

for outer joins

SQL: 1999
Compliant Joins:

Oracle Proprietary
Joins (8i and prior):

SQL1 4-7

Defining Joins
When data from more than one table in the database is required, a join condition is used. Rows in one table
can be joined to rows in another table according to common values existing in corresponding columns, that
is, usually primary and foreign key columns.
To display data from two or more related tables, write a simple join condition in the WHERE clause.

In the syntax:
table1.column denotes the table and column from which data is retrieved
table1.column1 = is the condition that joins (or relates) the tables together
table2.column2

Guidelines
• When writing a SELECT statement that joins tables, precede the column name with the table name

for clarity and to enhance database access.
• If the same column name appears in more than one table, the column name must be prefixed with the

table name.
• To join n tables together, you need a minimum of n-1 join conditions. For example, to join four

tables, a minimum of three joins is required. This rule may not apply if your table has a concatenated
primary key, in which case more than one column is required to uniquely identify each row.

For more information, see Oracle9i SQL Reference, “SELECT.”

4-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining Tables Using Oracle Syntax

Use a join to query data from more than one table.

• Write the join condition in the WHERE clause.

• Prefix the column name with the table name when
the same column name appears in more than one
table.

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column1 = table2.column2;

SQL1 4-8

Equijoins
To determine an employee’s department name, you compare the value in the DEPARTMENT_ID column in
the EMPLOYEES table with the DEPARTMENT_ID values in the DEPARTMENTS table. The relationship
between the EMPLOYEES and DEPARTMENTS tables is an equijoin— that is, values in the
DEPARTMENT_ID column on both tables must be equal. Frequently, this type of join involves primary and
foreign key complements.
Note: Equijoins are also called simple joins or inner joins.

4-8 Copyright © Oracle Corporation, 2001. All rights reserved.

What is an Equijoin?

EMPLOYEES DEPARTMENTS

Foreign key Primary key

SQL1 4-9

Retrieving Records with Equijoins
In the slide example:

• The SELECT clause specifies the column names to retrieve:

– employee last name, employee number, and department number, which are
columns in the EMPLOYEES table

– department number, department name, and location ID, which are columns in the
DEPARTMENTS table

• The FROM clause specifies the two tables that the database must access:
– EMPLOYEES table
– DEPARTMENTS table

• The WHERE clause specifies how the tables are to be joined:
EMPLOYEES.DEPARTMENT_ID = DEPARTMENTS.DEPARTMENT_ID

Because the DEPARTMENT_ID column is common to both tables, it must be prefixed by the
table name to avoid ambiguity.

4-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Records
with Equijoins

SELECT employees.employee_id, employees.last_name,
employees.department_id, departments.department_id,
departments.location_id

FROM employees, departments
WHERE employees.department_id = departments.department_id;

SQL1 4-10

Additional Search Conditions
In addition to the join, you may have criteria for your WHERE clause to restrict the rows under consideration
for one or more tables in the join. For example, to display employee Matos' department number and
department name, you need an additional condition in the WHERE clause.

SELECT last_name, employees.department_id,
department_name

FROM employees, departments
WHERE employees.department_id = departments.department_id
AND last_name = 'Matos';

4-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Additional Search Conditions
Using the AND Operator

EMPLOYEES DEPARTMENTS

SQL1 4-11

Qualifying Ambiguous Column Names
You need to qualify the names of the columns in the WHERE clause with the table name to avoid ambiguity.
Without the table prefixes, the DEPARTMENT_ID column could be from either the DEPARTMENTS table
or the EMPLOYEES table. It is necessary to add the table prefix to execute your query.

If there are no common column names between the two tables, there is no need to qualify the columns.
However, using the table prefix improves performance, because you tell the Oracle Server exactly where to
find the columns.
The requirement to qualify ambiguous column names is also applicable to columns that may be ambiguous
in other clauses, such as the SELECT clause or the ORDER BY clause.

4-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Qualifying Ambiguous
Column Names

• Use table prefixes to qualify column names that
are in multiple tables.

• Improve performance by using table prefixes.
• Distinguish columns that have identical names but

reside in different tables by using column aliases.

SQL1 4-12

4-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Table Aliases

• Simplify queries by using table aliases.
• Improve performance by using table prefixes.

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e, departments d
WHERE e.department_id = d.department_id;

Table Aliases
Qualifying column names with table names can be very time consuming, particularly if table names are
lengthy. You can use table aliases instead of table names. Just as a column alias gives a column another
name, a table alias gives a table another name. Table aliases help to keep SQL code smaller, therefore
using less memory.
Notice how table aliases are identified in the FROM clause in the example. The table name is specified in
full, followed by a space and then the table alias. The EMPLOYEES table has been given an alias of e, and
the DEPARTMENTS table has an alias of d.

Guidelines
• Table aliases can be up to 30 characters in length, but shorter is better.
• If a table alias is used for a particular table name in the FROM clause, then that table alias must be

substituted for the table name throughout the SELECT statement.

• Table aliases should be meaningful.
• The table alias is valid only for the current SELECT statement.

SQL1 4-13

4-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining More than Two Tables
EMPLOYEES LOCATIONSDEPARTMENTS

• To join n tables together, you need a minimum of
n-1 join conditions. For example, to join three
tables, a minimum of two joins is required.

Additional Search Conditions
Sometimes you may need to join more than two tables. For example, to display the last name, the
department name, and the city for each employee, you have to join the EMPLOYEES, DEPARTMENTS, and
LOCATIONS tables.

SELECT e.last_name, d.department_name, l.city
FROM employees e, departments d, locations l
WHERE e.department_id = d.department_id
AND d.location_id = l.location_id;

SQL1 4-14

Non-Equijoins
A non-equijoin is a join condition containing something other than an equality operator.
The relationship between the EMPLOYEES table and the JOB_GRADES table has an example
of a non-equijoin. A relationship between the two tables is that the SALARY column in the
EMPLOYEES table must be between the values in the LOWEST_SALARY and
HIGHEST_SALARY columns of the JOB_GRADES table. The relationship is obtained using
an operator other than equals (=).

4-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Non-Equijoins

EMPLOYEES JOB_GRADES

Salary in the EMPLOYEES
table must be between
lowest salary and highest
salary in the JOB_GRADES
table.

SQL1 4-15

4-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Records
with Non-Equijoins

SELECT e.last_name, e.salary, j.grade_level
FROM employees e, job_grades j
WHERE e.salary BETWEEN j.lowest_sal AND j.highest_sal;

Non-Equijoins (continued)
The slide example creates a non-equijoin to evaluate an employee’s salary grade. The salary must be
between any pair of the low and high salary ranges.
It is important to note that all employees appear exactly once when this query is executed. No employee is
repeated in the list. There are two reasons for this:

• None of the rows in the job grade table contain grades that overlap. That is, the salary value for an
employee can lie only between the low salary and high salary values of one of the rows in the salary
grade table.

• All of the employees’ salaries lie within the limits provided by the job grade table. That is, no
employee earns less than the lowest value contained in the LOWEST_SAL column or more than the
highest value contained in the HIGHEST_SAL column.

Note: Other conditions, such as <= and >= can be used, but BETWEEN is the simplest. Remember to
specify the low value first and the high value last when using BETWEEN.

Table aliases have been specified in the slide example for performance reasons, not because of possible
ambiguity.

SQL1 4-16

Returning Records with No Direct Match with Outer Joins
If a row does not satisfy a join condition, the row will not appear in the query result. For example, in the
equijoin condition of EMPLOYEES and DEPARTMENTS tables, employee Grant does not appear because
there is no department ID recorded for her in the EMPLOYEES table. Instead of seeing 20 employees in the
result set, you see 19 records.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id;

4-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Outer Joins

EMPLOYEESDEPARTMENTS

There are no employees in
department 190.

SQL1 4-17

Using Outer Joins to Return Records with No Direct Match
The missing rows can be returned if an outer join operator is used in the join condition. The operator is a
plus sign enclosed in parentheses (+), and it is placed on the “side” of the join that is deficient in
information. This operator has the effect of creating one or more null rows, to which one or more rows from
the nondeficient table can be joined.
In the syntax:

table1.column = is the condition that joins (or relates) the tables together.
table2.column (+) is the outer join symbol, which can be placed on either side of the

WHERE clause condition, but not on both sides. (Place the outer
join symbol following the name of the column in the table without
the matching rows.)

4-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Outer Joins Syntax

• You use an outer join to also see rows that do not
meet the join condition.

• The Outer join operator is the plus sign (+).

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column(+) = table2.column;

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column = table2.column(+);

SQL1 4-18

Using Outer Joins to Return Records with No Direct Match (continued)
The slide example displays employee last names, department ID’s and department names. The Contracting
department does not have any employees. The empty value is shown in the output shown.

Outer Join Restrictions
• The outer join operator can appear on only one side of the expression— the side that has information

missing. It returns those rows from one table that have no direct match in the other table.
• A condition involving an outer join cannot use the IN operator or be linked to another condition by

the OR operator.

4-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Outer Joins

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id(+) = d.department_id;

SQL1 4-19

Joining a Table to Itself
Sometimes you need to join a table to itself. To find the name of each employee’s manager, you need to
join the EMPLOYEES table to itself, or perform a self join. For example, to find the name of Whalen’s
manager, you need to:

• Find Whalen in the EMPLOYEES table by looking at the LAST_NAME column.
• Find the manager number for Whalen by looking at the MANAGER_ID column. Whalen’s manager

number is 101.
• Find the name of the manager with EMPLOYEE_ID 101 by looking at the LAST_NAME column.

Kochhar’s employee number is 101, so Kochhar is Whalen’s manager.
In this process, you look in the table twice. The first time you look in the table to find Whalen in the
LAST_NAME column and MANAGER_ID value of 101. The second time you look in the EMPLOYEE_ID
column to find 101 and the LAST_NAME column to find Kochhar.

4-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Self Joins

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

MANAGER_ID in the WORKER table is equal to
EMPLOYEE_ID in the MANAGER table.

SQL1 4-20

Joining a Table to Itself (continued)
The slide example joins the EMPLOYEES table to itself. To simulate two tables in the FROM clause, there
are two aliases, namely w and m, for the same table, EMPLOYEES.
In this example, the WHERE clause contains the join that means “where a worker’s manager number
matches the employee number for the manager.”

4-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining a Table to Itself

SELECT worker.last_name || ' works for '
|| manager.last_name

FROM employees worker, employees manager
WHERE worker.manager_id = manager.employee_id;

SQL1 4-21

4-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 4, Part One: Overview

This practice covers writing queries to join tables
together using Oracle syntax.

Practice 4, Part One
This practice is designed to give you a variety of exercises that join tables together using the Oracle syntax
shown in the lesson so far.
Complete practice questions 1- 4 at the end of this lesson.

SQL1 4-22

4-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Joining Tables Using SQL: 1999 Syntax

Use a join to query data from more than one table.

SELECT table1.column, table2.column
FROM table1
[CROSS JOIN table2] |
[NATURAL JOIN table2] |
[JOIN table2 USING (column_name)] |
[JOIN table2

ON(table1.column_name = table2.column_name)] |
[LEFT|RIGHT|FULL OUTER JOIN table2

ON (table1.column_name = table2.column_name)];

Defining Joins
Using the SQL: 1999 syntax, you can obtain the same results as were shown in the prior pages.
In the syntax:

table1.column Denotes the table and column from which data is retrieved
CROSS JOIN Returns a cartesian product from the two tables
NATURAL JOIN Joins two tables based on the same column name
JOIN table
USING column_name Performs an equijoin based on the column name
JOIN table ON
table1.column_name Performs an equijoin based on the condition in the ON clause
= table2.column_name
LEFT/RIGHT/FULL OUTER

For more information, see Oracle9i SQL Reference, “SELECT.”

SQL1 4-23

4-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Cross Joins

• The CROSS JOIN clause produces the cross-
product of two tables.

• This is the same as a Cartesian product between
the two tables.

SELECT last_name, department_name
FROM employees
CROSS JOIN departments;

Creating Cross Joins
The example on the slide gives the same results as the following:

SELECT last_name, department_name
FROM employees, departments;

SQL1 4-24

4-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Natural Joins

• The NATURAL JOIN clause is based on all columns
in the two tables that have the same name.

• It selects rows from the two tables that have equal
values in all matched columns.

• If the columns having the same names have
different data types, an error is returned.

Creating Natural Joins
It was not possible to do a join without explicitly specifying the columns in the corresponding tables in
prior releases of Oracle. In Oracle9i it is possible to let the join be completed automatically based on
columns in the two tables which have matching data types and names, using the keywords NATURAL
JOIN keywords.

Note: The join can happen only on columns having the same names and data types in both the tables. If the
columns have the same name, but different data types, then the NATURAL JOIN syntax causes an error.

SQL1 4-25

4-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Records with Natural Joins

SELECT department_id, department_name,
location_id, city

FROM departments
NATURAL JOIN locations;

Retrieving Records with Natural Joins
In the example on the slide, the LOCATIONS table is joined to the DEPARTMENT table by the
LOCATION_ID column, which is the only column of the same name in both tables. If other common
columns were present, the join would have used them all.
Equijoins
The natural join can also be written as an equijoin:

SELECT department_id, department_name,
departments.location_id, city

FROM departments, locations
WHERE departments.location_id = locations.location_id;

Natural Joins with a WHERE Clause
Additional restrictions on a natural join are implemented by using a WHERE clause. The example below
limits the rows of output to those with a department ID equal to 20 or 50.

SELECT department_id, department_name,
location_id, city

FROM departments
NATURAL JOIN locations
WHERE department_id IN (20, 50);

SQL1 4-26

4-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Joins with the USING Clause

• If several columns have the same names but the
data types do not match, the NATURAL JOIN
clause can be modified with the USING clause to
specify the columns that should be used for an
equijoin.

• Use the USING clause to match only one column
when more than one column matches.

• Do not use a table name or alias in the referenced
columns.

• The NATURAL JOIN and USING clauses are
mutually exclusive.

The USING Clause
Natural joins use all columns with matching names and data types to join the tables. The USING clause can
be used to specify only those columns that should be used for an equijoin. The columns referenced in the
USING clause should not have a qualifier (table name or alias) anywhere in the SQL statement.

For example, this statement is valid:
SELECT l.city, d.department_name
FROM locations l JOIN departments d USING (location_id)
WHERE location_id = 1400;

This statement is invalid because the LOCATION_ID is qualified in the WHERE clause:
SELECT l.city, d.department_name
FROM locations l JOIN departments d USING (location_id)
WHERE d.location_id = 1400;
ORA-25154: column part of USING clause cannot have qualifier

The same restriction applies to NATURAL joins also. Therefore columns that have the same name in both
tables have to be used without any qualifiers.

SQL1 4-27

4-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Records with the USING Clause

SELECT e.employee_id, e.last_name, d.location_id
FROM employees e JOIN departments d
USING (department_id);

The USING Clause (continued)
The example shown joins the DEPARTMENT_ID column in the EMPLOYEES and DEPARTMENTS tables,
and thus shows the location where an employee works.
This can also be written as an equijoin:

SELECT employee_id, last_name,
employees.department_id, location_id

FROM employees, departments
WHERE employees.department_id = departments.department_id;

SQL1 4-28

4-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Joins with the ON Clause

• The join condition for the natural join is basically
an equijoin of all columns with the same name.

• To specify arbitrary conditions or specify columns
to join, the ON clause is used.

• The join condition is separated from other search
conditions.

• The ON clause makes code easy to understand.

The ON Condition
Use the ON clause to specify a join condition. This lets you specify join conditions separate from any search
or filter conditions in the WHERE clause.

SQL1 4-29

4-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Records with the ON Clause

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id);

Creating Joins with the ON Clause
The ON clause can also be used as follows to join columns that have different names:

SELECT e.last_name emp, m.last_name mgr
FROM employees e JOIN employees m
ON (e.manager_id = m.employee_id);

The preceding example is a selfjoin of the EMPLOYEE table to itself, based on the EMPLOYEE_ID and
MANAGER_ID columns.

SQL1 4-30

4-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Three-Way Joins with the ON
Clause

SELECT employee_id, city, department_name
FROM employees e
JOIN departments d
ON d.department_id = e.department_id
JOIN locations l
ON d.location_id = l.location_id;

Three-Way Joins
A three-way join is a join of three tables. In SQL: 1999 compliant syntax, joins are performed from left to
right so the first join to be performed is EMPLOYEES JOIN DEPARTMENTS. The first join condition can
reference columns in EMPLOYEES and DEPARTMENTS but cannot reference columns in LOCATIONS.
The second join condition can reference columns from all three tables.
This can also be written as a three-way equijoin:

SELECT employee_id, city, department_name
FROM employees, departments, locations
WHERE employees.department_id = departments.department_id
AND departments.location_id = locations.location_id;

SQL1 4-31

4-31 Copyright © Oracle Corporation, 2001. All rights reserved.

INNER Versus OUTER Joins

• In SQL: 1999, the join of two tables returning only
matched rows is an inner join.

• A join between two tables that returns the results
of the inner join as well as unmatched rows left (or
right) tables is a left (or right) outer join.

• A join between two tables that returns the results
of an inner join as well as the results of a left and
right join is a full outer join.

Joins - Comparing SQL: 1999 to Oracle Syntax

Oracle SQL: 1999

Equi-Join Natural/Inner Join

Outer-Join Left Outer Join

Self-Join Join ON

Non-Equi-Join Join USING

Cartesian Product Cross Join

SQL1 4-32

4-32 Copyright © Oracle Corporation, 2001. All rights reserved.

LEFT OUTER JOIN

SELECT e.last_name, e.department_id, d.department_name
FROM employees e
LEFT OUTER JOIN departments d
ON (e.department_id = d.department_id);

Example of LEFT OUTER JOIN
This query retrieves all rows in the EMPLOYEES table, which is the left table even if there is no match in
the DEPARTMENTS table.

This query was completed in earlier releases as follows:

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE d.department_id (+) = e.department_id;

SQL1 4-33

4-33 Copyright © Oracle Corporation, 2001. All rights reserved.

RIGHT OUTER JOIN

SELECT e.last_name, e.department_id, d.department_name
FROM employees e
RIGHT OUTER JOIN departments d
ON (e.department_id = d.department_id);

Example of RIGHT OUTER JOIN
This query retrieves all rows in the DEPARTMENTS table, which is the right table even if there is no match
in the EMPLOYEES table.

This query was completed in earlier releases as follows:

SELECT e.last_name, e.department_id, d.department_name
FROM employees e, departments d
WHERE d.department_id = e.department_id (+);

SQL1 4-34

4-34 Copyright © Oracle Corporation, 2001. All rights reserved.

FULL OUTER JOIN

SELECT e.last_name, e.department_id, d.department_name
FROM employees e
FULL OUTER JOIN departments d
ON (e.department_id = d.department_id);

Example of FULL OUTER JOIN
This query retrieves all rows in the EMPLOYEES table, even if there is no match in the DEPARTMENTS
table. It also retrieves all rows in the DEPARTMENTS table, even if there is no match in the EMPLOYEES
table.

SQL1 4-35

4-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Additional Conditions

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
AND e.manager_id = 149;

Applying Additional Conditions
You can apply additional conditions in the WHERE clause. The example shown performs a join on the
EMPLOYEES and DEPARTMENTS tables, and, in addition, displays only employees with a manager ID
equal to 149.

SQL1 4-36

4-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to use
joins to display data from multiple tables in:
• Oracle proprietary syntax for versions 8i and

earlier
• SQL: 1999 compliant syntax for version 9i

Summary
There are multiple ways to join tables.
Types of Joins

• Equijoins
• Non-equijoins
• Outer joins
• Self joins
• Cross joins
• Natural joins
• Full or outer joins

Cartesian Products
A Cartesian product results in all combinations of rows displayed. This is done by either omitting the
WHERE clause or specifying the CROSS JOIN clause.

Table Aliases
• Table aliases speed up database access.
• Table aliases can help to keep SQL code smaller, by conserving memory.

SQL1 4-37

4-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 4, Part Two: Overview

This practice covers the following topics:
• Joining tables using an equijoin
• Performing outer and self joins
• Adding conditions

Practice 4, Part Two
This practice is intended to give you practical experience in extracting data from more than one table. Try
using both the Oracle proprietary syntax and the SQL: 1999 compliant syntax.
In Part Two, questions 5-8, try writing the join statements using ANSI syntax.
In Part Two, questions 9-11, try writing the join statements using both the Oracle syntax and the ANSI
syntax.

SQL1 4-38

Practice 4 - Part One

1. Write a query to display the last name, department number, and department name for
all employees.

2. Create a unique listing of all jobs that are in department 80. Include the location of department in
the output.

3. Write a query to display the employee last name, department name, location ID, and city of all
employees who earn a commission.

SQL1 4-39

Practice 4 - Part One (continued)

4. Display the employee last name and department name for all employees who have an a (lowercase)
in their last names. Place your SQL statement in a text file named lab4_4.sql.

SQL1 4-40

Practice 4 - Part Two

5. Write a query to display the last name, job, department number, and department name for all
employees who work in Toronto.

6. Display the employee last name and employee number along with their manager’s last name and
manager number. Label the columns Employee, Emp#, Manager, and Mgr#, respectively.
Place your SQL statement in a text file named lab4_6.sql.

SQL1 4-41

Practice 4 - Part Two (continued)

7. Modify lab4_6.sql to display all employees including King, who has no manager. Order the
results by the employee number.
Place your SQL statement in a text file named lab4_7.sql. Run the query in lab4_7.sql.

If you have time, complete the following exercises:
8. Create a query that displays employee last names, department numbers, and all the

employees who work in the same department as a given employee. Give each column an appropriate
label.

SQL1 4-42

Practice 4 - Part Two (continued)

9. Show the structure of the JOB_GRADES table. Create a query that displays the name, job,
department name, salary, and grade for all employees.

If you want an extra challenge, complete the following exercises:
10. Create a query to display the name and hire date of any employee hired after employee Davies.

SQL1 4-43

Practice 4 - Part Two (continued)

11. Display the names and hire dates for all employees who were hired before their managers, along with
their manager’s names and hire dates. Label the columns Employee, Emp
Hired, Manager, and Mgr Hired, respectively.

SQL1 4-44

Copyright © Oracle Corporation, 2001. All rights reserved.

Aggregating Data
Using Group Functions

SQL1 5-2

Lesson Aim
This lesson further addresses functions. It focuses on obtaining summary information, such as averages, for
groups of rows. It discusses how to group rows in a table into smaller sets and how to specify search criteria
for groups of rows.

5-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Identify the available group functions
• Describe the use of group functions
• Group data using the GROUP BY clause

• Include or exclude grouped rows by using the
HAVING clause

SQL1 5-3

Group Functions
Unlike single-row functions, group functions operate on sets of rows to give one result per
group. These sets may be the whole table or the table split into groups.

5-3 Copyright © Oracle Corporation, 2001. All rights reserved.

What Are Group Functions?
Group functions operate on sets of rows to give one
result per group.
EMPLOYEES

The maximum
salary in
the EMPLOYEES
table.

SQL1 5-4

Group Functions (continued)
Each of the functions accepts an argument. The following table identifies the options that you can use in the
syntax:

5-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Group Functions

• AVG
• COUNT
• MAX
• MIN
• STDDEV
• SUM
• VARIANCE

Function Description

AVG([DISTINCT|ALL]n) Average value of n, ignoring null values

COUNT({*|[DISTINCT|ALL]ex
pr})

Number of rows, where expr evaluates to something
other than null (count all selected rows using *, including
duplicates and rows with nulls)

MAX([DISTINCT|ALL]expr) Maximum value of expr, ignoring null values

MIN([DISTINCT|ALL]expr) Minimum value of expr, ignoring null values
STDDEV([DISTINCT|ALL]x) Standard deviation of n, ignoring null values

SUM([DISTINCT|ALL]n) Sum values of n, ignoring null values
VARIANCE([DISTINCT|ALL]x) Variance of n, ignoring null values

SQL1 5-5

Guidelines for Using Group Functions
• DISTINCT makes the function consider only nonduplicate values; ALL makes it consider every

value including duplicates. The default is ALL and therefore does not need to be specified.
• The data types for the functions with an expr argument may be CHAR, VARCHAR2, NUMBER, or

DATE.
• All group functions ignore null values. To substitute a value for null values, use the NVL, NVL2, or

COALESCE functions.
• The Oracle server implicitly sorts the result set in ascending order when using a GROUP BY clause.

To override this default ordering, DESC can be used in an ORDER BY clause.

5-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Group Functions Syntax

SELECT [column,] group_function(column), ...
FROM table
[WHERE condition]
[GROUP BY column]
[ORDER BY column];

SQL1 5-6

Group Functions
You can use AVG, SUM, MIN, and MAX functions against columns that can store numeric data. The example
on the slide displays the average, highest, lowest, and sum of monthly salaries for all sales representatives.

5-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the AVG and SUM Functions

You can use AVG and SUM for numeric data.

SELECT AVG(salary), MAX(salary),
MIN(salary), SUM(salary)

FROM employees
WHERE job_id LIKE '%REP%';

SQL1 5-7

5-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the MIN and MAX Functions

You can use MIN and MAX for any data type.

SELECT MIN(hire_date), MAX(hire_date)
FROM employees;

Group Functions (continued)
You can use the MAX and MIN functions for any data type. The slide example displays the most junior and
most senior employee.
The following example displays the employee last name that is first and the employee last name that is the
last in an alphabetized list of all employees.

SELECT MIN(last_name), MAX(last_name)
FROM employees;

Note: AVG, SUM, VARIANCE, and STDDEV functions can be used only with numeric data types.

SQL1 5-8

The COUNT Function
The COUNT function has three formats:
• COUNT(*)
• COUNT(expr)
• COUNT(DISTINCT expr)

COUNT(*) returns the number of rows in a table that satisfy the criteria of the SELECT statement,
including duplicate rows and rows containing null values in any of the columns. If a WHERE clause is
included in the SELECT statement, COUNT(*) returns the number of rows that satisfies the condition in
the WHERE clause.
In contrast, COUNT(expr) returns the number of non-null values in the column identified by expr.
COUNT(DISTINCT expr) returns the number of unique, non-null values in the column identified by
expr.

The slide example displays the number of employees in department 50.

5-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COUNT Function

SELECT COUNT(*)
FROM employees
WHERE department_id = 50;

COUNT(*) returns the number of rows in a table.

SQL1 5-9

5-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COUNT Function

• COUNT(expr) returns the number of rows with
non-null values for the expr.

• Display the number of department values in the
EMPLOYEES table, excluding the null values.

SELECT COUNT(commission_pct)
FROM employees
WHERE department_id = 80;

The COUNT Function (continued)

The slide example displays the number of employees in department 80 who can earn a commission.
Example
Display the number of department values in the EMPLOYEES table.

SELECT COUNT(department_id)
FROM employees;

SQL1 5-10

5-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DISTINCT Keyword

• COUNT(DISTINCT expr) returns the number of
distinct non-null values of the expr.

• Display the number of distinct department values
in the EMPLOYEES table.

SELECT COUNT(DISTINCT department_id)
FROM employees;

The DISTINCT Keyword
Use the DISTINCT keyword to suppress the counting of any duplicate values within a column.
The example on the slide displays the number of distinct department values in the EMPLOYEES table.

SQL1 5-11

5-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Group Functions and Null Values

Group functions ignore null values in the column.

SELECT AVG(commission_pct)
FROM employees;

Group Functions and Null Values
All group functions ignore null values in the column. In the slide example, the average is
calculated based only on the rows in the table where a valid value is stored in the
COMMISSION_PCT column. The average is calculated as the total commission paid to all
employees divided by the number of employees receiving a commission (four).

SQL1 5-12

5-12 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT AVG(NVL(commission_pct, 0))
FROM employees;

Using the NVL Function
with Group Functions

The NVL function forces group functions to include
null values.

Group Functions and Null Values (continued)
The NVL function forces group functions to include null values. In the slide example, the
average is calculated based on all rows in the table, regardless of whether null values are
stored in the COMMISSION_PCT column. The average is calculated as the total commission
paid to all employees divided by the total number of employees in the company (20).

SQL1 5-13

Groups of Data
Until now, all group functions have treated the table as one large group of information. At
times, you need to divide the table of information into smaller groups. This can be done by
using the GROUP BY clause.

5-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Groups of Data

EMPLOYEES

The
average
salary

in
EMPLOYEES

table
for each

department.

4400

9500

3500

6400

SQL1 5-14

The GROUP BY Clause
You can use the GROUP BY clause to divide the rows in a table into groups. You can then use the group
functions to return summary information for each group.
In the syntax:

group_by_expression specifies columns whose values determine the basis for
grouping rows

Guidelines
• If you include a group function in a SELECT clause, you cannot select individual results as well,

unless the individual column appears in the GROUP BY clause. You receive an error message if you
fail to include the column list in the GROUP BY clause.

• Using a WHERE clause, you can exclude rows before dividing them into groups.
• You must include the columns in the GROUP BY clause.
• You cannot use a column alias in the GROUP BY clause.
• By default, rows are sorted by ascending order of the columns included in the GROUP BY list. You

can override this by using the ORDER BY clause.

5-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Groups of Data:
The GROUP BY Clause Syntax

SELECT column, group_function(column)
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

Divide rows in a table into smaller groups by using the
GROUP BY clause.

SQL1 5-15

The GROUP BY Clause (continued)
When using the GROUP BY clause, make sure that all columns in the SELECT list that are not group
functions are included in the GROUP BY clause. The example on the slide displays the department number
and the average salary for each department. Here is how this SELECT statement, containing a GROUP BY
clause, is evaluated:

• The SELECT clause specifies the columns to be retrieved:
– Department number column in the EMPLOYEES table
– The average of all the salaries in the group you specified in the GROUP BY clause

• The FROM clause specifies the tables that the database must access: the EMPLOYEES table.
• The WHERE clause specifies the rows to be retrieved. Since there is no WHERE clause, all rows are

retrieved by default.
• The GROUP BY clause specifies how the rows should be grouped. The rows are being grouped by

department number, so the AVG function that is being applied to the salary column will calculate the
average salary for each department.

5-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the GROUP BY Clause

All columns in the SELECT list that are not in group
functions must be in the GROUP BY clause.

SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id;

SQL1 5-16

The GROUP BY Clause (continued)
The GROUP BY column does not have to be in the SELECT clause. For example, the SELECT statement on
the slide displays the average salaries for each department without displaying the respective department
numbers. Without the department numbers, however, the results do not look meaningful.
You can use the group function in the ORDER BY clause.

SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id
ORDER BY AVG(salary);

5-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the GROUP BY Clause

The GROUP BY column does not have to be in the
SELECT list.

SELECT AVG(salary)
FROM employees
GROUP BY department_id;

SQL1 5-17

5-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Grouping by More Than One Column

EMPLOYEES

“Add up the
salaries in

the EMPLOYEES
table

for each job,
grouped by
department.

Groups within Groups
Sometimes you need to see results for groups within groups. The slide shows a report that displays the total
salary being paid to each job title, within each department.
The EMPLOYEES table is grouped first by department number and, within that grouping, by job title. For
example, the four stock clerks in department 50 are grouped together and a single result (total salary) is
produced for all stock clerks within the group.

SQL1 5-18

5-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the GROUP BY Clause
on Multiple Columns

SELECT department_id dept_id, job_id, SUM(salary)
FROM employees
GROUP BY department_id, job_id;

Groups within Groups (continued)
You can return summary results for groups and subgroups by listing more than one GROUP BY
column. You can determine the default sort order of the results by the order of the columns in the
GROUP BY clause. Here is how the SELECT statement on the slide, containing a GROUP BY clause,
is evaluated:

• The SELECT clause specifies the column to be retrieved:
– Department number in the EMPLOYEES table
– Job ID in the EMPLOYEES table
– The sum of all the salaries in the group that you specified in the GROUP BY clause

• The FROM clause specifies the tables that the database must access: the EMPLOYEES table.
• The GROUP BY clause specifies how you must group the rows:

– First, the rows are grouped by department number.
– Second, within the department number groups, the rows are grouped by job ID.

So the SUM function is being applied to the salary column for all job IDs within each department
number group.

SQL1 5-19

Illegal Queries Using Group Functions
Whenever you use a mixture of individual items (DEPARTMENT_ID) and group functions (COUNT) in the
same SELECT statement, you must include a GROUP BY clause that specifies the individual items (in this
case, DEPARTMENT_ID). If the GROUP BY clause is missing, then the error message “not a single-group
group function” appears and an asterisk (*) points to the offending column. You can correct the error on the
slide by adding the GROUP BY clause.

SELECT department_id, count(last_name)
FROM employees
GROUP BY department_id;

Any column or expression in the SELECT list that is not an aggregate function must be in the GROUP BY
clause.

5-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Illegal Queries
Using Group Functions

Any column or expression in the SELECT list that is
not an aggregate function must be in the GROUP BY
clause.

SELECT department_id, COUNT(last_name)
FROM employees;

SELECT department_id, COUNT(last_name)
*

ERROR at line 1:
ORA-00937: not a single-group group function

Column missing in the GROUP BY
clause

SQL1 5-20

5-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Illegal Queries
Using Group Functions

• You cannot use the WHERE clause to
restrict groups.

• You use the HAVING clause to restrict groups.
• You cannot use group functions in the WHERE

clause.
SELECT department_id, AVG(salary)
FROM employees
WHERE AVG(salary) > 8000
GROUP BY department_id;

WHERE AVG(salary) > 8000
*

ERROR at line 3:
ORA-00934: group function is not allowed here

Cannot use the WHE
RE clause

to restrict groups

Illegal Queries Using Group Functions (continued)
The WHERE clause cannot be used to restrict groups. The SELECT statement on the slide results in an error
because it uses the WHERE clause to restrict the display of average salaries of those departments that have
an average salary greater than $8,000.
You can correct the slide error by using the HAVING clause to restrict groups.

SELECT department_id, AVG(salary)
FROM employees
HAVING AVG(salary) > 8000
GROUP BY department_id;

SQL1 5-21

5-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Excluding Group Results

The maximum
salary

per department
when it is

greater than
$10,000

EMPLOYEES

Restricting Group Results
In the same way that you use the WHERE clause to restrict the rows that you select, you use the HAVING
clause to restrict groups. To find the maximum salary of each department, but show only the departments
that have a maximum salary of more than $10,000, you need to do the following:

1. Find the average salary for each department by grouping by department number.
2. Restrict the groups to those departments with a maximum salary greater than $10,000.

SQL1 5-22

5-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Excluding Group Results: The HAVING
Clause

Use the HAVING clause to restrict groups:

1. Rows are grouped.
2. The group function is applied.
3. Groups matching the HAVING clause are

displayed.

SELECT column, group_function
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];

The HAVING Clause
You use the HAVING clause to specify which groups are to be displayed, and thus, you further restrict the
groups on the basis of aggregate information.
In the syntax:

group_condition restricts the groups of rows returned to those groups for which
the specified condition is true

The Oracle server performs the following steps when you use the HAVING clause:

1. Rows are grouped.
2. The group function is applied to the group.
3. The groups that match the criteria in the HAVING clause are displayed.

The HAVING clause can precede the GROUP BY clause, but it is recommended that you place the GROUP
BY clause first because that is more logical. Groups are formed and group functions are calculated before
the HAVING clause is applied to the groups in the SELECT list.

SQL1 5-23

The HAVING Clause (continued)

The slide example displays department numbers and maximum salaries for those departments whose
maximum salary is greater than $10,000.
You can use the GROUP BY clause without using a group function in the SELECT list.
If you restrict rows based on the result of a group function, you must have a GROUP BY clause as well as
the HAVING clause.

The following example displays the department numbers and average salaries for those departments whose
maximum salary is greater than $10,000:

SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id
HAVING max(salary)>10000;

5-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the HAVING Clause

SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000;

SQL1 5-24

5-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the HAVING Clause

SELECT job_id, SUM(salary) PAYROLL
FROM employees
WHERE job_id NOT LIKE '%REP%'
GROUP BY job_id
HAVING SUM(salary) > 13000
ORDER BY SUM(salary);

The HAVING Clause (continued)

The slide example displays the job ID and total monthly salary for each job with a total payroll exceeding
$13,000. The example excludes sales representatives and sorts the list by the total monthly salary.

SQL1 5-25

Nesting Group Functions
Group functions can be nested to a depth of two. The slide example displays the maximum average salary.

5-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Nesting Group Functions

Display the maximum average salary.

SELECT MAX(AVG(salary))
FROM employees
GROUP BY department_id;

SQL1 5-26

5-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

SELECT column, group_function(column)
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];

In this lesson, you should have learned how to:
• Use the group functions COUNT, MAX, MIN, AVG
• Write queries that use the GROUP BY clause
• Write queries that use the HAVING clause

Summary
Seven group functions are available in SQL:
• AVG
• COUNT
• MAX
• MIN
• SUM
• STDDEV
• VARIANCE

You can create subgroups by using the GROUP BY clause. Groups can be excluded using the HAVING clause.
Place the HAVING and GROUP BY clauses after the WHERE clause in a statement. Place the ORDER BY
clause last.
The Oracle server evaluates the clauses in the following order:

1. If the statement contains a WHERE clause, the server establishes the candidate rows.
2. The server identifies the groups specified in the GROUP BY clause.
3. The HAVING clause further restricts result groups that do not meet the group criteria in the HAVING

clause.

SQL1 5-27

5-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 5 Overview

This practice covers the following topics:
• Writing queries that use the group functions
• Grouping by rows to achieve more than one result
• Excluding groups by using the HAVING clause

Practice 5 Overview
At the end of this practice, you should be familiar with using group functions and selecting groups of data.

Paper-Based Questions
For questions 1-3, circle either True or False.
Note: Column aliases are used for the queries.

SQL1 5-28

Practice 5

Determine the validity of the following three statements. Circle either True or False.
1. Group functions work across many rows to produce one result per group.

True/False
2. Group functions include nulls in calculations.

True/False
3. The WHERE clause restricts rows prior to inclusion in a group calculation.

True/False
4. Display the highest, lowest, sum, and average salary of all employees. Label the columns

Maximum, Minimum, Sum, and Average, respectively. Round your results to the nearest whole
number. Place your SQL statement in a text file named lab5_6.sql.

5. Modify the query in lab5_4.sql to display the minimum, maximum, sum, and average salary for
each job type. Resave lab5_6.sql to lab5_4.sql. Run the statement in lab5_5.sql.

SQL1 5-29

Practice 5 (continued)

6. Write a query to display the number of people with the same job.

7. Determine the number of managers without listing them. Label the column Number of
Managers. Hint: Use the MANAGER_ID column to determine the number of managers.

8. Write a query that displays the difference between the highest and lowest salaries. Label the column
DIFFERENCE.

If you have time, complete the following exercises:
9. Display the manager number and the salary of the lowest paid employee for that manager.

Exclude anyone whose manager is not known. Exclude any groups where the minimum
salary is $6,000 or less. Sort the output in descending order of salary.

SQL1 5-30

Practice 5 (continued)
10. Write a query to display each department’s name, location, number of employees, and the

average salary for all employees in that department. Label the columns Name, Location,
Number of People, and Salary, respectively. Round the average salary to two decimal
places.

If you want an extra challenge, complete the following exercises:
11. Create a query that will display the total number of employees and, of that total, the number of

employees hired in 1995, 1996, 1997, and 1998. Create appropriate column headings.

12. Create a matrix query to display the job, the salary for that job based on department number, and
the total salary for that job, for departments 20, 50, 80, and 90, giving each column an
appropriate heading.

Copyright © Oracle Corporation, 2001. All rights reserved.

Subqueries

SQL1 6-2

Lesson Aim
In this lesson, you learn about more advanced features of the SELECT statement. You can write subqueries
in the WHERE clause of another SQL statement to obtain values based on an unknown conditional value.
This lesson covers single-row subqueries and multiple-row subqueries.

6-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Describe the types of problem that subqueries can

solve
• Define subqueries
• List the types of subqueries
• Write single-row and multiple-row subqueries

SQL1 6-3

Using a Subquery to Solve a Problem
Suppose you want to write a query to find out who earns a salary greater than Abel’s salary.
To solve this problem, you need two queries: one to find what Abel earns, and a second query to find who
earns more than that amount.
You can solve this problem by combining the two queries, placing one query inside the other query.
The inner query or the subquery returns a value that is used by the outer query or the main query. Using a
subquery is equivalent to performing two sequential queries and using the result of the first query as the
search value in the second query.

6-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery
to Solve a Problem

Who has a salary greater than Abel’s?

Which employees have salaries greater
than Abel’s salary?

Main Query:

?

What is Abel’s salary?
?

Subquery

SQL1 6-4

Subqueries
A subquery is a SELECT statement that is embedded in a clause of another SELECT statement. You can
build powerful statements out of simple ones by using subqueries. They can be very useful when you need
to select rows from a table with a condition that depends on the data in the table itself.
You can place the subquery in a number of SQL clauses, including:

• The WHERE clause
• The HAVING clause
• The FROM clause

In the syntax:
operator includes a comparison condition such as >, =, or IN

Note: Comparison conditions fall into two classes: single-row operators (>, =, >=, <, <>, <=) and multiple-
row operators (IN, ANY, ALL).
The subquery is often referred to as a nested SELECT, sub-SELECT, or inner SELECT statement. The
subquery generally executes first, and its output is used to complete the query condition for the main or
outer query.

6-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Subquery Syntax

• The subquery (inner query) executes once before
the main query.

• The result of the subquery is used by the main
query (outer query).

SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

SQL1 6-5

6-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery

11000

SELECT last_name
FROM employees
WHERE salary >

(SELECT salary
FROM employees
WHERE last_name = 'Abel');

Using a Subquery
In the slide, the inner query determines the salary of employee Abel. The outer query takes the result of
the inner query and uses this result to display all the employees who earn more than this amount.

SQL1 6-6

Guidelines for Using Subqueries
• A subquery must be enclosed in parentheses.
• Place the subquery on the right side of the comparison condition for readability.
• Prior to release Oracle8i, subqueries could not contain an ORDER BY clause. Only one ORDER BY

clause can be used for a SELECT statement, and if specified it must be the last clause in the main
SELECT statement. Starting with release Oracle8i, an ORDER BY clause can be used and is required
in the subquery to perform Top-N analysis.

• Two classes of comparison conditions are used in subqueries: single-row operators and
multiple-row operators.

6-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Using Subqueries

• Enclose subqueries in parentheses.
• Place subqueries on the right side of the

comparison condition.
• The ORDER BY clause in the subquery is not

needed unless you are performing Top-N analysis.
• Use single-row operators with single-row

subqueries and use multiple-row operators with
multiple-row subqueries.

SQL1 6-7

Types of Subqueries
• Single-row subqueries: Queries that return only one row from the inner SELECT statement
• Multiple-row subqueries: Queries that return more than one row from the inner SELECT

statement
Note: There are also multiple-column subqueries: Queries that return more than one column from the
inner SELECT statement.

6-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Subqueries

Main query

Subquery
returns

ST_CLERK

• Multiple-row subquery

ST_CLERK
SA_MAN

Main query

Subquery
returns

• Single-row subquery

SQL1 6-8

6-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Single-Row Subqueries

• Return only one row
• Use single-row comparison operators

Operator

=

>

>=

<

<=

<>

Meaning

Equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Not equal to

Single-Row Subqueries
A single-row subquery is one that returns one row from the inner SELECT statement. This type of
subquery uses a single-row operator. The slide gives a list of single-row operators.
Example
Display the employees whose job ID is the same as that of employee 141.

SELECT last_name, job_id
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE employee_id = 141);

SQL1 6-9

6-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Executing Single-Row Subqueries

ST_CLERK

2600

SELECT last_name, job_id, salary
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE employee_id = 141)

AND salary >
(SELECT salary
FROM employees
WHERE employee_id = 143);

Executing Single-Row Subqueries
A SELECT statement can be considered as a query block. The example on the slide displays employees
whose job ID is the same as that of employee 141 and whose salary is greater than that of employee 143.
The example consists of three query blocks: the outer query and two inner queries. The inner query blocks
are executed first, producing the query results ST_CLERK and 2600, respectively. The outer query block is
then processed and uses the values returned by the inner queries to complete its search conditions.
Both inner queries return single values (ST_CLERK and 2600, respectively), so this SQL statement is
called a single-row subquery.
Note: The outer and inner queries can get data from different tables.

SQL1 6-10

Using Group Functions in a Subquery
You can display data from a main query by using a group function in a subquery to return a single row. The
subquery is in parentheses and is placed after the comparison condition.
The example on the slide displays the employee last name, job ID, and salary of all employees whose salary
is equal to the minimum salary. The MIN group function returns a single value (2500) to the outer query.

6-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Group Functions in a Subquery

2500
SELECT last_name, job_id, salary
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees);

SQL1 6-11

6-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The HAVING Clause with Subqueries

• The Oracle server executes subqueries first.
• The Oracle server returns results into the HAVING

clause of the main query.

2500

SELECT department_id, MIN(salary)
FROM employees
GROUP BY department_id
HAVING MIN(salary) >

(SELECT MIN(salary)
FROM employees
WHERE department_id = 50);

The HAVING Clause with Subqueries
You can use subqueries not only in the WHERE clause, but also in the HAVING clause. The Oracle server
executes the subquery, and the results are returned into the HAVING clause of the main query.

The SQL statement on the slide displays all the departments that have a minimum salary greater than that of
department 50.

Example
Find the job with the lowest average salary.

SELECT job_id, AVG(salary)
FROM employees
GROUP BY job_id
HAVING AVG(salary) = (SELECT MIN(AVG(salary))

FROM employees
GROUP BY job_id);

SQL1 6-12

6-12 Copyright © Oracle Corporation, 2001. All rights reserved.

What is Wrong
with this Statement?

ERROR at line 4:
ORA-01427: single-row subquery returns more than
one row

SELECT employee_id, last_name
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees
GROUP BY department_id);

Single-row operator with

multiple-row subquery

Errors with Subqueries
One common error with subqueries is more than one row returned for a single-row subquery.
In the SQL statement on the slide, the subquery contains a GROUP BY clause, which implies that the
subquery will return multiple rows, one for each group it finds. In this case, the result of the subquery
will be 4400, 6000, 2500, 4200, 7000, 17000, and 8300.
The outer query takes the results of the subquery (4400, 6000, 2500, 4200, 7000, 17000, 8300) and uses
these results in its WHERE clause. The WHERE clause contains an equal (=) operator, a single-row
comparison operator expecting only one value. The = operator cannot accept more than one value from
the subquery and therefore generates the error.
To correct this error, change the = operator to IN.

SQL1 6-13

6-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Will this Statement Return Rows?

no rows selected

SELECT last_name, job_id
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE last_name = 'Haas');

Subquery returns no values

Problems with Subqueries
A common problem with subqueries is no rows being returned by the inner query.
In the SQL statement on the slide, the subquery contains a WHERE clause. Presumably, the intention is
to find the employee whose name is Haas. The statement is correct but selects no rows when executed.
There is no employee named Haas. So the subquery returns no rows. The outer query takes the results of
the subquery (null) and uses these results in its WHERE clause. The outer query finds no employee with
a job ID equal to null, and so returns no rows. If a job existed with a value of null, the row is not
returned because comparison of two null values yields a null, therefore the WHERE condition is not true.

SQL1 6-14

6-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Multiple-Row Subqueries

• Return more than one row
• Use multiple-row comparison operators

Operator

IN

ANY

ALL

Meaning

Equal to any member in the list

Compare value to each value returned by
the subquery

Compare value to every value returned
by the subquery

Multiple-Row Subqueries
Subqueries that return more than one row are called multiple-row subqueries. You use a multiple-row
operator, instead of a single-row operator, with a multiple-row subquery. The multiple-row operator
expects one or more values.

SELECT last_name, salary, department_id
FROM employees
WHERE salary IN (SELECT MIN(salary)

FROM employees
GROUP BY department_id);

Example
Find the employees who earn the same salary as the minimum salary for each department.
The inner query is executed first, producing a query result. The main query block is then processed and
uses the values returned by the inner query to complete its search condition. In fact, the main query would
appear to the Oracle server as follows:

SELECT last_name, salary, department_id
FROM employees
WHERE salary IN (2500, 4200, 4400, 6000, 7000, 8300, 8600, 1 7000);

SQL1 6-15

6-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the ANY Operator
in Multiple-Row Subqueries

9000, 6000, 4200

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ANY

(SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')

AND job_id <> 'IT_PROG';

Multiple-Row Subqueries (continued)
The ANY operator (and its synonym, the SOME operator) compares a value to each value returned by a
subquery. The slide example displays employees who are not IT programmers and whose salary is less than
that of any IT programmer. The maximum salary that a programmer earns is $9,000.
<ANY means less than the maximum. >ANY means more than the minimum. =ANY is equivalent to IN.
<ALL means less than the maximum. >ALL means more than the minimum.

SQL1 6-16

6-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the ALL Operator
in Multiple-Row Subqueries

9000, 6000, 4200

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ALL

(SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')

AND job_id <> 'IT_PROG';

Multiple-Row Subqueries (continued)
The ALL operator compares a value to every value returned by a subquery. The slide example displays
employees whose salary is less than the salary of all employees with a job ID of IT_PROG and whose job
is not IT_PROG.
>ALL means more than the maximum, and <ALL means less than the minimum.
The NOT operator can be used with IN, ANY, and ALL operators.

SQL1 6-17

6-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Null Values in a Subquery

SELECT emp.last_name
FROM employees emp
WHERE emp.employee_id NOT IN

(SELECT mgr.manager_id
FROM employees mgr);

no rows selected

Returning Nulls in the Resulting Set of a Subquery
The SQL statement on the slide attempts to display all the employees who do not have any subordinates.
Logically, this SQL statement should have returned 12 rows. However, the SQL statement does not return
any rows. One of the values returned by the inner query is a null value, and hence the entire query returns no
rows. The reason is that all conditions that compare a null value result in a null. So whenever null values are
likely to be part of the results set of a subquery, do not use the NOT IN operator. The NOT IN operator is
equivalent to <> ALL.
Notice that the null value as part of the results set of a subquery is not a problem if you use the IN operator.
The IN operator is equivalent to =ANY. For example, to display the employees who have subordinates, use
the following SQL statement:

SELECT emp.last_name
FROM employees emp
WHERE emp.employee_id IN

(SELECT mgr.manager_id
FROM employees mgr);

Alternatively, a WHERE clause can be included in the subquery to display all employees who do not have any
subordinates:

SELECT last_name FROM employees
WHERE employee_id NOT IN

(SELECT manager_id FROM employees
WHERE manager_id IS NOT NULL);

SQL1 6-18

Summary
In this lesson, you should have learned how to use subqueries. A subquery is a SELECT statement that is
embedded in a clause of another SQL statement. Subqueries are useful when a query is based on a search
criteria with unknown intermediate values.
Subqueries have the following characteristics:

• Can pass one row of data to a main statement that contains a single-row operator, such as =, <>, >,
>=, <, or <=

• Can pass multiple rows of data to a main statement that contains a multiple-row operator, such as IN
• Are processed first by the Oracle server, and the WHERE or HAVING clause uses the results

• Can contain group functions

6-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Identify when a subquery can help solve a

question
• Write subqueries when a query is based on

unknown values
SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

SQL1 6-19

6-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 6 Overview

This practice covers the following topics:
• Creating subqueries to query values based on

unknown criteria
• Using subqueries to find out which values exist in

one set of data and not in another

Practice 6
In this practice, you write complex queries using nested SELECT statements.

Paper-Based Questions
You may want to create the inner query first for these questions . Make sure that it runs and produces the
data that you anticipate before coding the outer query.

SQL1 6-20

Practice 6

1. Write a query to display the last name and hire date of any employee in the same
department as Zlotkey. Exclude Zlotkey.

2. Create a query to display the employee numbers and last names of all employees who earn more than the
average salary. Sort the results in ascending order of salary.

3. Write a query that displays the employee numbers and last names of all employees who work in a
department with any employee whose last name contains a u. Place your SQL statement in a text file
named lab6_3.sql. Run your query.

SQL1 6-21

Practice 6 (continued)

4. Display the last name, department number, and job ID of all employees whose
department location ID is 1700.

5. Display the last name and salary of every employee who reports to King.

6. Display the department number, last name, and job ID for every employee in the Executive
department.

If you have time, complete the following exercises:
7. Modify the query in lab6_3.sql to display the employee numbers, last names, and salaries of all

employees who earn more than the average salary and who work in a department with any
employee with a u in their name. Resave lab6_3.sql to lab6_7.sql. Run the statement in
lab6_7.sql.

SQL1 6-22

Copyright © Oracle Corporation, 2001. All rights reserved.

Producing Readable Output
with iSQL*Plus

SQL1 7-2

Lesson Aim
In this lesson, you will learn how to include iSQL*Plus commands to produce more readable SQL output.
You can create a command file containing a WHERE clause to restrict the rows displayed. To change the
condition each time the command file is run, you use substitution variables. Substitution variables can
replace values in the WHERE clause, a text string, and even a column or a table name.

7-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Produce queries that require a substitution

variable
• Customize the iSQL*Plus environment
• Produce more readable output
• Create and execute script files

SQL1 7-3

Substitution Variables
The examples so far have been hard-coded. In a finished application, the user would trigger the report, and
the report would run without further prompting. The range of data would be predetermined by the fixed
WHERE clause in the iSQL*Plus script file.

Using iSQL*Plus, you can create reports that prompt the user to supply their own values to restrict the
range of data returned by using substitution variables. You can embed substitution variables in a
command file or in a single SQL statement. A variable can be thought of as a container in which the values
are temporarily stored. When the statement is run, the value is substituted.

7-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Substitution Variables

I want to query
different values.... salary = ? …

… department_id = ? …
... last_name = ? ...

User

SQL1 7-4

Substitution Variables
In iSQL*Plus, you can use single ampersand (&) substitution variables to temporarily store values.
You can predefine variables in iSQL*Plus by using the DEFINE command. DEFINE creates and assigns a
value to a variable.
Examples of Restricted Ranges of Data

• Reporting figures only for the current quarter or specified date range
• Reporting on data relevant only to the user requesting the report
• Displaying personnel only within a given department

Other Interactive Effects
Interactive effects are not restricted to direct user interaction with the WHERE clause. The same principles can
be used to achieve other goals. For example:

• Dynamically altering headers and footers
• Obtaining input values from a file rather than from a person
• Passing values from one SQL statement to another

iSQL*Plus does not support validation checks (except for data type) on user input.

7-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Substitution Variables

Use iSQL*Plus substitution variables to:
• Temporarily store values

– Single ampersand (&)

– Double ampersand (&&)
– DEFINE command

• Pass variable values between SQL statements
• Dynamically alter headers and footers

SQL1 7-5

7-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the & Substitution Variable

Use a variable prefixed with an ampersand (&) to
prompt the user for a value.

SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num;

Single-Ampersand Substitution Variable
When running a report, users often want to restrict the data returned dynamically. iSQL*Plus provides
this flexibility by means of user variables. Use an ampersand (&) to identify each variable in your SQL
statement. You do not need to define the value of each variable.

The example on the slide creates an iSQL*Plus substitution variable for an employee number. When the
statement is executed, iSQL*Plus prompts the user for an employee number and then displays the
employee number, last name, salary, and department number for that employee.
With the single ampersand, the user is prompted every time the command is executed, if the variable does
not exist.

Notation Description

&user_variable Indicates a variable in a SQL statement; if the variable does
not exist, iSQL*Plus prompts the user for a value (iSQL*Plus
discards a new variable once it is used.)

SQL1 7-6

7-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the & Substitution Variable

101 1

2

Single-Ampersand Substitution Variable
When iSQL*Plus detects that the SQL statement contains an &, you are prompted to enter a value for the
substitution variable named in the SQL statement. Once you enter a value and click the Submit for
Execution button, the results are displayed in the output area of your iSQL*Plus session.

SQL1 7-7

Specifying Character and Date Values with Substitution Variables
In a WHERE clause, date and character values must be enclosed within single quotation marks. The same
rule applies to the substitution variables.
Enclose the variable in single quotation marks within the SQL statement itself.
The slide shows a query to retrieve the employee names, department numbers, and annual salaries of all
employees based on the job title value of the iSQL*Plus substitution variable.
Note: You can also use functions such as UPPER and LOWER with the ampersand. Use
UPPER('&job_title') so that the user does not have to enter the job title in uppercase.

7-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Character and Date Values
with Substitution Variables

Use single quotation marks for date and character
values.

SELECT last_name, department_id, salary*12
FROM employees
WHERE job_id = '&job_title';

SQL1 7-8

7-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Specifying Column Names,
Expressions, and Text

Use substitution variables to supplement the
following:
• WHERE conditions
• ORDER BY clauses

• Column expressions
• Table names
• Entire SELECT statements

Specifying Column Names, Expressions, and Text
Not only can you use the substitution variables in the WHERE clause of a SQL statement, but these variables
can also be used to substitute for column names, expressions, or text.
Example
Display the employee number and any other column and any condition of employees.

SELECT employee_id, &column_name
FROM employees
WHERE &condition;

If you do not enter a value for the substitution variable, you will get an error when you execute the
preceding statement.
Note: A substitution variable can be used anywhere in the SELECT statement, except as the first word
entered at the command prompt.

SQL1 7-9

7-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Specifying Column Names,
Expressions, and Text

SELECT employee_id, last_name, job_id,
&column_name

FROM employees
WHERE &condition
ORDER BY &order_column;

Specifying Column Names, Expressions, and Text (continued)
The slide example displays the employee number, name, job title, and any other column specified by the
user at run time, from the EMPLOYEES table. You can also specify the condition for retrieval of rows and
the column name by which the resultant data has to be ordered.

SQL1 7-10

7-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining Substitution Variables

• You can predefine variables using the iSQL*Plus
DEFINE command.

DEFINE variable = value creates a user
variable with the CHAR data type.

• If you need to predefine a variable that includes
spaces, you must enclose the value within single
quotation marks when using the DEFINE
command.

• A defined variable is available for the session

Defining Substitution Variables
You can predefine user variables before executing a SELECT statement. iSQL*Plus provides the DEFINE
command for defining and setting substitution variables:

Command Description

DEFINE variable = value

Creates a user variable with the CHAR data and assigns a
value to it

DEFINE variable Displays the variable, its value, and its data type

DEFINE Displays all user variables with their values and data
types

SQL1 7-11

The DEFINE and UNDEFINE Commands

Variables are defined until you either:
• Issue the UNDEFINE command on a variable

• Exit iSQL*Plus
When you undefine variables, you can verify your changes with the DEFINE command. When you exit
iSQL*Plus, variables defined during that session are lost.

7-11 Copyright © Oracle Corporation, 2001. All rights reserved.

DEFINE and UNDEFINE Commands

• A variable remains defined until you either:
– Use the UNDEFINE command to clear it

– Exit iSQL*Plus

• You can verify your changes with the DEFINE
command.

DEFINE job_title = IT_PROG
DEFINE job_title
DEFINE JOB_TITLE = "IT_PROG" (CHAR)

UNDEFINE job_title
DEFINE job_title
SP2-0135: symbol job_title is UNDEFINED

SQL1 7-12

7-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the DEFINE Command with
& Substitution Variable

• Create the substitution variable using the DEFINE
command.

• Use a variable prefixed with an ampersand (&) to
substitute the value in the SQL statement.

DEFINE employee_num = 200

SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num;

Using the DEFINE Command

The example on the slide creates an iSQL*Plus substitution variable for an employee number by using the
DEFINE command, and at run time displays the employee number, name, salary, and department number
for that employee.
Because the variable is created using the iSQL*Plus DEFINE command, the user is not prompted to enter a
value for the employee number. Instead, the defined variable value is automatically substituted in the
SELECT statement.

The EMPLOYEE_NUM substitution variable is present in the session until the user undefines it or exits the
iSQL*Plus session.

SQL1 7-13

7-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the && Substitution Variable

Use the double-ampersand (&&) if you want to reuse
the variable value without prompting the user each
time.

SELECT employee_id, last_name, job_id, &&column_name
FROM employees
ORDER BY &column_name;

Double-Ampersand Substitution Variable
You can use the double-ampersand (&&) substitution variable if you want to reuse the variable value
without prompting the user each time. The user will see the prompt for the value only once. In the example
on the slide, the user is asked to give the value for variable column_name only once. The value supplied by
the user (department_id) is used both for display and ordering of data.
iSQL*Plus stores the value supplied by using the DEFINE command; it will use it again whenever you
reference the variable name. Once a user variable is in place, you need to use the UNDEFINE command to
delete it.

SQL1 7-14

The VERIFY Command
To confirm the changes in the SQL statement, use the iSQL*Plus VERIFY command. Setting SET
VERIFY ON forces iSQL*Plus to display the text of a command before and after it replaces substitution
variables with values.
The example on the slide displays the old as well as the new value of the EMPLOYEE_ID column.

7-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the VERIFY Command

Use the VERIFY command to toggle the display of the
substitution variable, before and after iSQL*Plus
replaces substitution variables with values.

old 3: WHERE employee_id = &employee_num
new 3: WHERE employee_id = 200

SET VERIFY ON
SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num;

SQL1 7-15

7-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Customizing the iSQL*Plus Environment

• Use SET commands to control current session.

• Verify what you have set by using the SHOW
command.

SET ECHO ON

SHOW ECHO
echo ON

SET system_variable value

Customizing the iSQL*Plus Environment
You can control the environment in which iSQL*Plus is currently operating by using the SET
commands.
Syntax

SET system_variable value

In the syntax:
system_variable is a variable that controls one aspect of the session environment
value is a value for the system variable

You can verify what you have set by using the SHOW command. The SHOW command on the slide
checks whether ECHO had been set on or off.
To see all SET variable values, use the SHOW ALL command.

For more information, see iSQL*Plus User’s Guide and Reference, “Command Reference.”

SQL1 7-16

SET Command Variables

Note: The value n represents a numeric value. The underlined values indicate default values. If you enter
no value with the variable, iSQL*Plus assumes the default value.

7-16 Copyright © Oracle Corporation, 2001. All rights reserved.

SET Command Variables

• ARRAYSIZE {20 | n}
• FEEDBACK {6 | n |OFF | ON}
• HEADING {OFF | ON}
• LONG {80 | n}| ON | text}

SET HEADING OFF

SHOW HEADING
HEADING OFF

SET Variable and Values Description

ARRAY[SIZE] {20| n} Sets the database data fetch size
FEED[BACK]
{6|n|OFF|ON}

Displays the number of records returned by a query when the
query selects at least n records

HEA[DING] {OFF|ON} Determines whether column headings are displayed in reports

LONG {80|n} Sets the maximum width for displaying LONG values

SQL1 7-17

7-17 Copyright © Oracle Corporation, 2001. All rights reserved.

iSQL*Plus Format Commands

•COLUMN [column option]
•TTITLE [text | OFF | ON]
•BTITLE [text | OFF | ON]
•BREAK [ON report_element]

Obtaining More Readable Reports
You can control the report features by using the following commands:

Guidelines
• All format commands remain in effect until the end of the iSQL*Plus session or until the format

setting is overwritten or cleared.
• Remember to reset your iSQL*Plus settings to the default values after every report.
• There is no command for setting an iSQL*Plus variable to its default value; you must know the

specific value or log out and log in again.
• If you give an alias to your column, you must reference the alias name, not the column name.

Command Description

COL[UMN][column option] Controls column formats

TTI[TLE] [text|OFF|ON] Specifies a header to appear at the top of each page of the
report

BTI[TLE] [text|OFF|ON] Specifies a footer to appear at the bottom of each page of
the report

BRE[AK] [ON
report_element]

Suppresses duplicate values and divides rows of data into
sections by using line breaks

SQL1 7-18

7-18 Copyright © Oracle Corporation, 2001. All rights reserved.

The COLUMN Command

Controls display of a column:

• CLE[AR]: Clears any column formats
• HEA[DING] text: Sets the column heading
• FOR[MAT] format: Changes the display of the

column using a format model
• NOPRINT | PRINT
• NULL

COL[UMN] [{column|alias} [option]]

COLUMN Command Options

Option Description

CLE[AR] Clears any column formats

HEA[DING] text

Sets the column heading (a vertical line (|) forces a line feed in the
heading if you do not use justification.)

FOR[MAT] format Changes the display of the column data
NOPRI[NT] Hides the column

NUL[L] text Specifies text to be displayed for null values

PRI[NT] Shows the column

SQL1 7-19

7-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the COLUMN Command

• Create column headings.

COLUMN last_name HEADING 'Employee|Name'
COLUMN salary JUSTIFY LEFT FORMAT $99,990.00
COLUMN manager FORMAT 999999999 NULL 'No manager'

COLUMN last_name

COLUMN last_name CLEAR

• Display the current setting for the LAST_NAME
column.

• Clear settings for the LAST_NAME column.

Displaying or Clearing Settings
To show or clear the current COLUMN command settings, use the following commands:

Command Description

COL[UMN] column Displays the current settings for the specified column

COL[UMN] Displays the current settings for all columns

COL[UMN] column CLE[AR] Clears the settings for the specified column

CLE[AR] COL[UMN] Clears the settings for all columns

SQL1 7-20

7-20 Copyright © Oracle Corporation, 2001. All rights reserved.

COLUMN Format Models

Result

1234

001234

$1234

L1234

1234.00

1,234

Example

999999

099999

$9999

L9999

9999.99

9,999

Element

9

0

$

L

.

,

Description

Single zero-suppression
digit

Enforces leading zero

Floating dollar sign

Local currency

Position of decimal point

Thousand separator

COLUMN Format Models
The slide displays sample COLUMN format models.
The Oracle server displays a string of pound signs (#) in place of a whole number whose digits exceed the
number of digits provided in the format model. It also displays pound signs in place of a value whose
format model is alphanumeric but whose actual value is numeric.

SQL1 7-21

7-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the BREAK Command

Use the BREAK command to suppress duplicates.

BREAK ON job_id

The BREAK Command
Use the BREAK command to divide rows into sections and suppress duplicate values. To ensure that the
BREAK command works effectively, use the ORDER BY clause to order the columns that you are
breaking on.
Syntax

BREAK on column[|alias|row]

In the syntax:

column[|alias|row suppresses the display of duplicate values for a given column

Clear all BREAK settings by using the CLEAR command:

CLEAR BREAK

SQL1 7-22

7-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the TTITLE and BTITLE Commands

• Display headers and footers.

• Set the report header.

• Set the report footer.

TTI[TLE] [text|OFF|ON]

TTITLE 'Salary|Report'

BTITLE 'Confidential'

The TTITLE and BTITLE Commands
Use the TTITLE command to format page headers and the BTITLE command for footers. Footers appear at
the bottom of the page.
The syntax for BTITLE and TTITLE is identical. Only the syntax for TTITLE is shown. You can use the
vertical bar (|) to split the text of the title across several lines.
Syntax

TTI[TLE]|BTI[TLE] [text|OFF|ON]

In the syntax:
text represents the title text (enter single quotes if the text is more than one word).
OFF|ON toggles the title either off or on. It is not visible when turned off.

The TTITLE example on the slide sets the report header to display Salary centered on one line and Report
centered below it. The BTITLE example sets the report footer to display Confidential. TTITLE
automatically puts the date and a page number on the report.
Note: The slide gives an abridged syntax for TTITLE and BTITLE. Various options for TTITLE and
BTITLE are covered in another SQL course.

SQL1 7-23

7-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Script File
to Run a Report

1. Create and test the SQL SELECT statement.
2. Save the SELECT statement into a script file.

3. Load the script file into an editor.
4. Add formatting commands before the SELECT

statement.
5. Verify that the termination character follows

the SELECT statement.

Creating a Script File to Run a Report
You can either enter each of the iSQL*Plus commands at the SQL prompt or put all the commands,
including the SELECT statement, in a command (or script) file. A typical script consists of at least one
SELECT statement and several iSQL*Plus commands.

How to Create a Script File
1. Create the SQL SELECT statement at the SQL prompt. Ensure that the data required for the

report is accurate before you save the statement to a file and apply formatting commands. Ensure that
the relevant ORDER BY clause is included if you intend to use breaks.

2. Save the SELECT statement to a script file.

3. Edit the script file to enter the iSQL*Plus commands.
4. Add the required formatting commands before the SELECT statement. Be certain not to place

iSQL*Plus commands within the SELECT statement.
5. Verify that the SELECT statement is followed by a run character, either a semicolon (;) or a

slash (/).

SQL1 7-24

7-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Script File
to Run a Report

6. Clear formatting commands after the SELECT
statement.

7. Save the script file.
8. Load the script file into the iSQL*Plus text

window, and click the Execute button.

How to Create a Script File (continued)
6. Add the format-clearing iSQL*Plus commands after the run character. Alternatively, you can store all

the format-clearing commands in a reset file.
7. Save the script file with your changes.
8. Load the script file into the iSQL*Plus text window, and click the Execute button.

Guidelines
• You can include blank lines between iSQL*Plus commands in a script.
• If you have a lengthy iSQL*Plus or SQL*Plus command, you can continue it on the next line by

ending the current line with a hyphen (-).

• You can abbreviate iSQL*Plus commands.
• Include reset commands at the end of the file to restore the original iSQL*Plus environment.

Note: REM represents a remark or comment in iSQL*Plus.

SQL1 7-25

7-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Sample Report

Example
Create a script file to create a report that displays the job ID, last name, and salary for every employee
whose salary is less than $15,000. Add a centered, two-line header that reads “Employee Report” and
a centered footer that reads “Confidential.” Rename the job title column to read “Job Category”
split over two lines. Rename the employee name column to read “Employee.” Rename the salary column
to read “Salary” and format it as $2,500.00.

SET FEEDBACK OFF
TTITLE 'Employee|Report'
BTITLE 'Confidential'
BREAK ON job_id
COLUMN job_id HEADING 'Job|Category'
COLUMN last_name HEADING 'Employee'
COLUMN salary HEADING 'Salary' FORMAT $99,999.99
REM ** Insert SELECT statement
SELECT job_id, last_name, salary
FROM employees
WHERE salary < 15000
ORDER BY job_id, last_name
/
REM clear all formatting commands ...
SET FEEDBACK ON
COLUMN job_id CLEAR
COLUMN last_name CLEAR
COLUMN salary CLEAR
CLEAR BREAK

SQL1 7-26

Summary
In this lesson, you should have learned about substitution variables and how useful they are for running
reports. They give you the flexibility to replace values in a WHERE clause, column names, and expressions.
You can customize reports by writing script files with:

• Single ampersand substitution variables
• Double ampersand substitution variables
• The DEFINE command
• The UNDEFINE command

• Substitution variables in the command line
You can create a more readable report by using the following commands:
• COLUMN
• TTITLE
• BTITLE
• BREAK

7-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use iSQL*Plus substitution variables to store

values temporarily
• Use SET commands to control the current

iSQL*Plus environment
• Use the COLUMN command to control the display of

a column
• Use the BREAK command to suppress duplicates

and divide rows into sections
• Use the TTITLE and BTITLE commands to display

headers and footers

SQL1 7-27

7-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 7 Overview

This practice covers the following topics:
• Creating a query to display values using

substitution variables
• Starting a command file containing variables

Practice 7 Overview
This practice gives you the opportunity to create files that can be run interactively by using substitution
variables to create run-time selection criteria.

SQL1 7-28

Practice 7

Determine whether the following two statements are true or false :
1. The following statement is valid:

DEFINE & p_val = 100

True/False
2. The DEFINE command is a SQL command.

True/False
3. Write a script file to display the last names, job IDs, and hire dates for all employees who

started within a given range of dates. Concatenate the name and job together, separated by a space
and comma, and label the column Employees. Use the DEFINE command to provide the two
ranges. Use the format MM/DD/YYYY. Save the script file as lab7_3.sql.

DEFINE low_date = 01/01/1998
DEFINE high_date = 01/01/1999

4. Write a script to display the last names, job IDs, and department names for every employee in a
given location. The search condition should allow for case-insensitive searches of the department
location. Save the script file as lab7_4.sql.

SQL1 7-29

Practice 7 (continued)

5. Modify the code in lab7_4.sql to create a report containing the department name, employee last
name, hire date, salary, and annual salary for each employee in a given location. Label the columns
DEPARTMENT NAME, EMPLOYEE NAME, START DATE, SALARY, and ANNUAL SALARY,
placing the labels on multiple lines. Resave the script as lab7_5.sql, and execute the commands
in the script.

SQL1 7-30

Copyright © Oracle Corporation, 2001. All rights reserved.

Manipulating Data

SQL1 8-2

Lesson Aim
In this lesson, you learn how to insert rows into a table, update existing rows in a table, and delete existing
rows from a table. You also learn how to control transactions with the COMMIT, SAVEPOINT, and
ROLLBACK statements.

8-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Describe each DML statement
• Insert rows into a table
• Update rows in a table
• Delete rows from a table
• Merge rows in a table
• Control transactions

SQL1 8-3

8-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Manipulation Language

• A DML statement is executed when you:
– Add new rows to a table
– Modify existing rows in a table
– Remove existing rows from a table

• A transaction consists of a collection of DML
statements that form a logical unit of work.

Data Manipulation Language
Data manipulation language (DML) is a core part of SQL. When you want to add, update, or delete data in
the database, you execute a DML statement. A collection of DML statements that form a logical unit of
work is called a transaction.
Consider a banking database. When a bank customer transfers money from a savings account to a checking
account, the transaction might consist of three separate operations: decrease the savings account, increase
the checking account, and record the transaction in the transaction journal. The Oracle server must
guarantee that all three SQL statements are performed to maintain the accounts in proper balance. When
something prevents one of the statements in the transaction from executing, the other statements of the
transaction must be undone.

SQL1 8-4

Adding a New Row to a Table
The slide graphic illustrates adding a new department to the DEPARTMENTS table.

8-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding a New Row to a Table

DEPARTMENTS
New
row

… insert a new row
into the

DEPARMENTS
table…

SQL1 8-5

Adding a New Row to a Table (continued)
You can add new rows to a table by issuing the INSERT statement.

In the syntax:
table is the name of the table
column is the name of the column in the table to populate
value is the corresponding value for the column

Note: This statement with the VALUES clause adds only one row at a time to a table.

8-5 Copyright © Oracle Corporation, 2001. All rights reserved.

The INSERT Statement Syntax

• Add new rows to a table by using the INSERT
statement.

• Only one row is inserted at a time with this syntax.

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);

SQL1 8-6

8-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting New Rows

• Insert a new row containing values for each
column.

• List values in the default order of the columns in
the table.

• Optionally, list the columns in the INSERT clause.

• Enclose character and date values within single
quotation marks.

INSERT INTO departments(department_id, department_name,
manager_id, location_id)

VALUES (70, 'Public Relations', 100, 1700);
1 row created.

Adding a New Row to a Table (continued)
Because you can insert a new row that contains values for each column, the column list is not required in
the INSERT clause. However, if you do not use the column list, the values must be listed according to the
default order of the columns in the table, and a value must be provided for each column.

DESCRIBE departments

For clarity, use the column list in the INSERT clause.
Enclose character and date values within single quotation marks; it is not recommended to enclose numeric
values within single quotation marks.
Number values should not be enclosed in single quotes, because implicit conversion may take place for
numeric values assigned to NUMBER data type columns if single quotes are included.

SQL1 8-7

8-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting Rows with Null Values

• Implicit method: Omit the column from the
column list.

INSERT INTO departments
VALUES (100, 'Finance', NULL, NULL);
1 row created.

INSERT INTO departments (department_id,
department_name)

VALUES (30, 'Purchasing');
1 row created.

• Explicit method: Specify the NULL keyword in the
VALUES clause.

Methods for Inserting Null Values

Be sure that you can use null values in the targeted column by verifying the Null? status with the
iSQL*Plus DESCRIBE command.

The Oracle Server automatically enforces all data types, data ranges, and data integrity constraints. Any
column that is not listed explicitly obtains a null value in the new row.
Common errors that can occur during user input:

• Mandatory value missing for a NOT NULL column

• Duplicate value violates uniqueness constraint
• Foreign key constraint violated
• CHECK constraint violated

• Data type mismatch
• Value too wide to fit in column

Method Description

Implicit Omit the column from the column list.

Explicit Specify the NULL keyword in the VALUES list,
specify the empty string ('') in the VALUES list for character strings and
dates.

SQL1 8-8

8-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting Special Values

The SYSDATE function records the current date
and time.
INSERT INTO employees (employee_id,

first_name, last_name,
email, phone_number,
hire_date, job_id, salary,
commission_pct, manager_id,
department_id)

VALUES (113,
'Louis', 'Popp',
'LPOPP', '515.124.4567',
SYSDATE, 'AC_ACCOUNT', 6900,
NULL, 205, 100);

1 row created.

Inserting Special Values by Using SQL Functions
You can use functions to enter special values in your table.
The slide example records information for employee Popp in the EMPLOYEES table. It supplies the current
date and time in the HIRE_DATE column. It uses the SYSDATE function for current date and time.
You can also use the USER function when inserting rows in a table. The USER function records the current
username.
Confirming Additions to the Table

SELECT employee_id, last_name, job_id, hire_date, commission _pct
FROM employees
WHERE employee_id = 113;

SQL1 8-9

Inserting Specific Date and Time Values
The DD-MON-YY format is usually used to insert a date value. With this format, recall that the century
defaults to the current century. Because the date also contains time information, the default time is
midnight (00:00:00).
If a date must be entered in a format other than the default format, for example, with another century, or
a specific time, you must use the TO_DATE function.
The example on the slide records information for employee Raphealy in the EMPLOYEES table. It sets
the HIRE_DATE column to be February 3, 1999. If you use the following statement instead of the one
shown on the slide, the year of the hire_date is interpreted as 2099.

INSERT INTO employees
VALUES (114,

'Den', 'Raphealy',
'DRAPHEAL', '515.127.4561',
'03-FEB-99',
'AC_ACCOUNT', 11000, NULL, 100, 30);

If the RR format is used, the system provides the correct century automatically, even if it is not the
current one.

8-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting Specific Date Values

• Add a new employee.

• Verify your addition.

INSERT INTO employees
VALUES (114,

'Den', 'Raphealy',
'DRAPHEAL', '515.127.4561',
TO_DATE('FEB 3, 1999', 'MON DD, YYYY'),
'AC_ACCOUNT', 11000, NULL, 100, 30);

1 row created.

SQL1 8-10

8-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Script

• Use & substitution in a SQL statement to prompt
for values.

• & is a placeholder for the variable value.

40

Human Resources

2500

1 row created.

INSERT INTO departments
(department_id, department_name, location_id)

VALUES (&department_id, '&department_name',&location);

Creating a Script to Manipulate Data
You can save commands with substitution variables to a file and execute the commands in the file. The
example above records information for a department in the DEPARTMENTS table.

Run the script file and you are prompted for input for the & substitution variables. The values you input are
then substituted into the statement. This allows you to run the same script file over and over, but supply a
different set of values each time you run it.

SQL1 8-11

8-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Copying Rows
from Another Table

• Write your INSERT statement with a subquery.

• Do not use the VALUES clause.
• Match the number of columns in the INSERT

clause to those in the subquery.

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee_id, last_name, salary, commission_pct
FROM employees
WHERE job_id LIKE '%REP%';

4 rows created.

Copying Rows from Another Table
You can use the INSERT statement to add rows to a table where the values are derived from existing tables. In
place of the VALUES clause, you use a subquery.

Syntax

INSERT INTO table [column (, column)] subquery;
In the syntax:

table is the table name
column is the name of the column in the table to populate
subquery is the subquery that returns rows into the table

The number of columns and their data types in the column list of the INSERT clause must match the number
of values and their data types in the subquery. To create a copy of the rows of a table, use SELECT * in the
subquery.

INSERT INTO copy_emp
SELECT *
FROM employees;

For more information, see Oracle9i SQL Reference, “SELECT,” subqueries section.

SQL1 8-12

Changing Data in a Table
The slide graphic illustrates changing the department number for employees in department 60 to
department 30.

8-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing Data in a Table

EMPLOYEES

Update rows in the EMPLOYEES table.

30
30

30

SQL1 8-13

Updating Rows
You can modify existing rows by using the UPDATE statement.

In the syntax:
table is the name of the table
column is the name of the column in the table to populate
value is the corresponding value or subquery for the column
condition identifies the rows to be updated and is composed of column names

expressions, constants, subqueries, and comparison operators
Confirm the update operation by querying the table to display the updated rows.
For more information, see Oracle9i SQL Reference, “UPDATE.”

Note: In general, use the primary key to identify a single row. Using other columns can unexpectedly cause
several rows to be updated. For example, identifying a single row in the EMPLOYEES table by name is
dangerous, because more than one employee may have the same name.

8-13 Copyright © Oracle Corporation, 2001. All rights reserved.

The UPDATE Statement Syntax

• Modify existing rows with the UPDATE statement.

• Update more than one row at a time, if required.

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

SQL1 8-14

8-14 Copyright © Oracle Corporation, 2001. All rights reserved.

• Specific row or rows are modified if you specify
the WHERE clause.

• All rows in the table are modified if you omit the
WHERE clause.

Updating Rows in a Table

UPDATE copy_emp
SET department_id = 110;
22 rows updated.

UPDATE employees
SET department_id = 70
WHERE employee_id = 113;
1 row updated.

Updating Rows (continued)
The UPDATE statement modifies specific rows if the WHERE clause is specified. The slide example
transfers employee 113 (Popp) to department 70.
If you omit the WHERE clause, all the rows in the table are modified.

SELECT last_name, department_id
FROM copy_emp;

Note: The COPY_EMP table has the same data as the EMPLOYEES table.

SQL1 8-15

8-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating Two Columns with a Subquery

Update employee 114’s job and salary to match that of
employee 205.
UPDATE employees
SET job_id = (SELECT job_id

FROM employees
WHERE employee_id = 205),

salary = (SELECT salary
FROM employees
WHERE employee_id = 205)

WHERE employee_id = 114;
1 row updated.

Updating Two Columns with a Subquery
You can update multiple columns in the SET clause of an UPDATE statement by writing multiple
subqueries.
Syntax

UPDATE table
SET column =

(SELECT column
FROM table
WHERE condition)

[,
column =

(SELECT column
FROM table
WHERE condition)]

[WHERE condition] ;
Note: If no rows are updated, a message “0 rows updated.” is returned.

SQL1 8-16

8-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating Rows Based
on Another Table

Use subqueries in UPDATE statements to update
rows in a table based on values from another table.

UPDATE copy_emp
SET department_id = (SELECT department_id

FROM employees
WHERE employee_id = 100)

WHERE job_id = (SELECT job_id
FROM employees
WHERE employee_id = 200);

1 row updated.

Updating Rows Based on Another Table
You can use subqueries in UPDATE statements to update rows in a table. The example on the slide updates
the COPY_EMP table based on the values from the EMPLOYEES table. It changes the department number of
all employees with employee 200’s job ID to employee 100’s current department number.

SQL1 8-17

Integrity Constraint Error
If you attempt to update a record with a value that is tied to an integrity constraint, an error is returned.
In the example on the slide, department number 55 does not exist in the parent table, DEPARTMENTS, and
so you receive the parent key violation ORA-02291.

Note: Integrity constraints ensure that the data adheres to a predefined set of rules. A subsequent lesson
covers integrity constraints in greater depth.

8-17 Copyright © Oracle Corporation, 2001. All rights reserved.

UPDATE employees
*

ERROR at line 1:
ORA-02291: integrity constraint (HR.EMP_DEPT_FK)
violated - parent key not found

UPDATE employees
SET department_id = 55
WHERE department_id = 110;

Updating Rows:
Integrity Constraint Error

Depart
men

t n
umber

55
does

not ex
ist

SQL1 8-18

Removing a Row from a Table
The slide graphic removes the Finance department from the DEPARTMENTS table (assuming that there
are no constraints defined on the DEPARTMENTS table).

8-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Delete a row from the DEPARTMENTS table.

Removing a Row from a Table
DEPARTMENTS

SQL1 8-19

Deleting Rows
You can remove existing rows by using the DELETE statement.

In the syntax:
table is the table name
condition identifies the rows to be deleted and is composed of column names,

expressions, constants, subqueries, and comparison operators

Note: If no rows are deleted, a message “0 rows deleted.” is returned:
For more information, see Oracle9i SQL Reference, “DELETE.”

8-19 Copyright © Oracle Corporation, 2001. All rights reserved.

The DELETE Statement

You can remove existing rows from a table by using
the DELETE statement.

DELETE [FROM] table
[WHERE condition];

SQL1 8-20

8-20 Copyright © Oracle Corporation, 2001. All rights reserved.

• Specific rows are deleted if you specify the WHERE
clause.

• All rows in the table are deleted if you omit the
WHERE clause.

Deleting Rows from a Table

DELETE FROM departments
WHERE department_name = 'Finance';

1 row deleted.

DELETE FROM copy_emp;
22 rows deleted.

Deleting Rows (continued)
You can delete specific rows by specifying the WHERE clause in the DELETE statement. The slide example
deletes the Finance department from the DEPARTMENTS table. You can confirm the delete operation by
displaying the deleted rows using the SELECT statement.

SELECT *
FROM departments
WHERE department_name = 'Finance';

no rows selected.
If you omit the WHERE clause, all rows in the table are deleted. The second example on the slide deletes all
the rows from the COPY_EMP table, because no WHERE clause has been specified.

Example
Remove rows identified in the WHERE clause.

DELETE FROM employees
WHERE employee_id = 114;

1 row deleted.

DELETE FROM departments
WHERE department_id IN (30, 40);

2 rows deleted.

SQL1 8-21

8-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Deleting Rows Based
on Another Table

Use subqueries in DELETE statements to remove
rows from a table based on values from another table.

DELETE FROM employees
WHERE department_id =

(SELECT department_id
FROM departments
WHERE department_name LIKE '%Public%');

1 row deleted.

Deleting Rows Based on Another Table
You can use subqueries to delete rows from a table based on values from another table. The example on the
slide deletes all the employees who are in a department where the department name contains the string
“Public”. The subquery searches the DEPARTMENTS table to find the department number based on the
department name containing the string “Public”. The subquery then feeds the department number to the
main query, which deletes rows of data from the EMPLOYEES table based on this department number.

SQL1 8-22

Integrity Constraint Error
If you attempt to delete a record with a value that is tied to an integrity constraint, an error is returned.
The example on the slide tries to delete department number 60 from the DEPARTMENTS table, but it results
in an error because department number is used as a foreign key in the EMPLOYEES table. If the parent
record that you attempt to delete has child records, then you receive the child record found violation ORA-
02292.

The following statement works because there are no employees in department 70:
DELETE FROM departments
WHERE department_id = 70;

1 row deleted.

8-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Deleting Rows:
Integrity Constraint Error

DELETE FROM departments
WHERE department_id = 60;

DELETE FROM departments
*

ERROR at line 1:
ORA-02292: integrity constraint (HR.EMP_DEPT_FK)
violated - child record found

You cannot delete a row

that contains a primary key

that is used as a foreign key

in another table.

SQL1 8-23

8-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery in an INSERT Statement

INSERT INTO
(SELECT employee_id, last_name,

email, hire_date, job_id, salary,
department_id

FROM employees
WHERE department_id = 50)

VALUES (99999, 'Taylor', 'DTAYLOR',
TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000, 50);

1 row created.

Using a Subquery in an INSERT Statement
You can use a subquery in place of the table name in the INTO clause of the INSERT statement.
The select list of this subquery must have the same number of columns as the column list of the VALUES
clause. Any rules on the columns of the base table must be followed in order for the INSERT statement to
work successfully. For example, you could not put in a duplicate employee ID, nor leave out a value for a
mandatory not null column.

SQL1 8-24

8-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Subquery in an INSERT Statement

• Verify the resultsSELECT employee_id, last_name, email, hire_date,
job_id, salary, department_id

FROM employees
WHERE department_id = 50;

Using a Subquery in an INSERT Statement
The example shows the results of the subquery that was used to identify the table for the INSERT
statement.

SQL1 8-25

8-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the WITH CHECK OPTION Keyword
on DML Statements

• A subquery is used to identify the table and
columns of the DML statement.

• The WITH CHECK OPTION keyword prohibits you
from changing rows that are not in the subquery.

INSERT INTO (SELECT employee_id, last_name, email,
hire_date, job_id, salary

FROM employees
WHERE department_id = 50 WITH CHECK OPTION)

VALUES (99998, 'Smith', 'JSMITH',
TO_DATE('07-JUN-99', 'DD-MON-RR'),
'ST_CLERK', 5000);

INSERT INTO
*

ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

The WITH CHECK OPTION Keyword
Specify WITH CHECK OPTION to indicate that, if the subquery is used in place of a table in an INSERT,
UPDATE, or DELETE statement, no changes that would produce rows that are not included in the subquery
are permitted to that table.
In the example shown, the WITH CHECK OPTION keyword is used. The subquery identifies rows that are
in department 50, but the department ID is not in the SELECT list, and a value is not provided for it in the
VALUES list. Inserting this row would result in a department ID of null, which is not in the subquery.

SQL1 8-26

8-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of the Explict Default Feature

• With the explicit default feature, you can use the
DEFAULT keyword as a column value where the
column default is desired.

• The addition of this feature is for compliance with
the SQL: 1999 Standard.

• This allows the user to control where and when
the default value should be applied to data.

• Explicit defaults can be used in INSERT and
UPDATE statements.

Explicit Defaults
The DEFAULT keyword can be used in INSERT and UPDATE statements to identify a default column
value. If no default value exists, a null value is used.

SQL1 8-27

8-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Using Explicit Default Values

INSERT INTO departments
(department_id, department_name, manager_id)

VALUES (300, 'Engineering', DEFAULT);

UPDATE departments
SET manager_id = DEFAULT WHERE department_id = 10;

• DEFAULT with INSERT:

• DEFAULT with UPDATE:

Using Explicit Default Values
Specify DEFAULT to set the column to the value previously specified as the default value for the column. If
no default value for the corresponding column has been specified, Oracle sets the column to null.
In the first example shown, the INSERT statement uses a default value for the MANAGER_ID column. If
there is no default value defined for the column, a null value is inserted instead.
The second example uses the UPDATE statement to set the MANAGER_ID column to a default value for
department 10. If no default value is defined for the column, it changes the value to null.
Note: When creating a table, you can specify a default value for a column. This is discussed in the
“Creating and Managing Tables” lesson.

SQL1 8-28

8-28 Copyright © Oracle Corporation, 2001. All rights reserved.

The MERGE Statement

• Provides the ability to conditionally update or
insert data into a database table

• Performs an UPDATE if the row exists, and an
INSERT if it is a new row:
– Avoids separate updates
– Increases performance and ease of use
– Is useful in data warehousing applications

MERGE Statements
SQL has been extended to include the MERGE statement. Using this statement, you can update or insert a
row conditionally into a table, thus avoiding multiple UPDATE statements. The decision whether to update
or insert into the target table is based on a condition in the ON clause.
Since the MERGE command combines the INSERT and UPDATE commands, you need both INSERT and
UPDATE privileges on the target table and the SELECT privilege on the source table.
The MERGE statement is deterministic. You cannot update the same row of the target table multiple times in
the same MERGE statement.
An alternative approach is to use PL/SQL loops and multiple DML statements. The MERGE statement,
however, is easy to use and more simply expressed as a single SQL statement.
The MERGE statement is suitable in a number of data warehousing applications. For example, in a data
warehousing application, you may need to work with data coming from multiple sources, some of which
may be duplicates. With the MERGE statement, you can conditionally add or modify rows.

SQL1 8-29

8-29 Copyright © Oracle Corporation, 2001. All rights reserved.

The MERGE Statement Syntax

You can conditionally insert or update rows in a
table by using the MERGE statement.

MERGE INTO table_name AS table_alias
USING (table|view|sub_query) alias
ON (join condition)
WHEN MATCHED THEN

UPDATE SET
col1 = col_val1,
col2 = col2_val

WHEN NOT MATCHED THEN
INSERT (column_list)
VALUES (column_values);

Merging Rows
You can update existing rows and insert new rows conditionally by using the MERGE statement.

In the syntax:
INTO clause specifies the target table you are updating or inserting into
USING clause identifies the source of the data to be updated or inserted; can be a

table, view, or subquery
ON clause the condition upon which the MERGE operation either updates or

inserts
WHEN MATCHED | instructs the server how to respond to the results of the join condition
WHEN NOT MATCHED

For more information, see Oracle9i SQL Reference, “MERGE.”

SQL1 8-30

8-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Merging Rows

Insert or update rows in the COPY_EMP table to match
the EMPLOYEES table.
MERGE INTO copy_emp c
USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
...
c.department_id = e.department_id

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,
e.salary, e.commission_pct, e.manager_id,
e.department_id);

Example of Merging Rows
MERGE INTO copy_emp c

USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
c.email = e.email,
c.phone_number = e.phone_number,
c.hire_date = e.hire_date,
c.job_id = e.job_id,
c.salary = e.salary,
c.commission_pct = e.commission_pct,
c.manager_id = e.manager_id,
c.department_id = e.department_id

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,
e.salary, e.commission_pct, e.manager_id,
e.department_id);

The example shown matches the EMPLOYEE_ID in the COPY_EMP table to the EMPLOYEE_ID in the
EMPLOYEES table. If a match is found, the row in the COPY_EMP table is updated to match the row in the
EMPLOYEES table. If the row is not found, it is inserted into the COPY_EMP table.

SQL1 8-31

8-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Merging Rows

MERGE INTO copy_emp c
USING employees e
ON (c.employee_id = e.employee_id)

WHEN MATCHED THEN
UPDATE SET

...
WHEN NOT MATCHED THEN
INSERT VALUES...;

SELECT *
FROM COPY_EMP;

no rows selected

SELECT *
FROM COPY_EMP;

20 rows selected.

Example of Merging Rows
The condition c.employee_id = e.employee_id is evaluated. Because the COPY_EMP table is
empty, the condition returns false: there are no matches. The logic falls into the WHEN NOT MATCHED
clause, and the MERGE command inserts the rows of the EMPLOYEES table into the COPY_EMP table.
If rows existed in the COPY_EMP table and employee IDs matched in both tables (the COPY_EMP and
EMPLOYEES tables), the existing rows in the COPY_EMP table would be updated to match the
EMPLOYEES table.

SQL1 8-32

8-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Transactions

A database transaction consists of one of the
following:
• DML statements which constitute one consistent

change to the data
• One DDL statement
• One DCL statement

Database Transactions
The Oracle server ensures data consistency based on transactions. Transactions give you more flexibility
and control when changing data, and they ensure data consistency in the event of user process failure or
system failure.
Transactions consist of DML statements that make up one consistent change to the data. For example, a
transfer of funds between two accounts should include the debit to one account and the credit to another
account in the same amount. Both actions should either fail or succeed together; the credit should not be
committed without the debit.

Transaction Types

Type Description

Data manipulation
language (DML)

Consists of any number of DML statements that the Oracle server
treats as a single entity or a logical unit of work

Data definition language
(DDL)

Consists of only one DDL statement

Data control language
(DCL)

Consists of only one DCL statement

SQL1 8-33

8-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Transactions

• Begin when the first DML SQL statement is
executed

• End with one of the following events:
– A COMMIT or ROLLBACK statement is issued

– A DDL or DCL statement executes (automatic
commit)

– The user exits iSQL*Plus
– The system crashes

When Does a Transaction Start and End?
A transaction begins when the first DML statement is encountered and ends when one of the following
occurs:

• A COMMIT or ROLLBACK statement is issued
• A DDL statement, such as CREATE, is issued

• A DCL statement is issued
• The user exits iSQL*Plus
• A machine fails or the system crashes

After one transaction ends, the next executable SQL statement automatically starts the next transaction.
A DDL statement or a DCL statement is automatically committed and therefore implicitly ends a
transaction.

SQL1 8-34

8-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of COMMIT
and ROLLBACK Statements

With COMMIT and ROLLBACK statements, you can:

• Ensure data consistency
• Preview data changes before making changes

permanent
• Group logically related operations

SQL1 8-35

8-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Transactions

SAVEPOINT B

SAVEPOINT A

DELETE

INSERT

UPDATE

INSERT

COMMITTime

Transaction

ROLLBACK
to SAVEPOINT B

ROLLBACK
to SAVEPOINT A

ROLLBACK

Explicit Transaction Control Statements
You can control the logic of transactions by using the COMMIT, SAVEPOINT, and ROLLBACK statements.

Note: SAVEPOINT is not ANSI standard SQL.

Statement Description

COMMIT

Ends the current transaction by making all pending data changes
permanent

SAVEPOINT name Marks a savepoint within the current transaction

ROLLBACK ROLLBACK ends the current transaction by discarding all pending
data changes

ROLLBACK TO
SAVEPOINT name

ROLLBACK TO SAVEPOINT rolls back the current transaction to
the specified savepoint, thereby discarding any changes and or
savepoints created after the savepoint to which you are rolling back.
If you omit the TO SAVEPOINT clause, the ROLLBACK statement
rolls back the entire transaction. As savepoints are logical, there is
no way to list the savepoints you have created.

SQL1 8-36

8-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Rolling Back Changes
to a Marker

• Create a marker in a current transaction by using
the SAVEPOINT statement.

• Roll back to that marker by using the ROLLBACK
TO SAVEPOINT statement.

UPDATE...
SAVEPOINT update_done;
Savepoint created.
INSERT...
ROLLBACK TO update_done;
Rollback complete.

Rolling Back Changes to a Savepoint
You can create a marker in the current transaction by using the SAVEPOINT statement which divides the
transaction into smaller sections. You can then discard pending changes up to that marker by using the
ROLLBACK TO SAVEPOINT statement.

If you create a second savepoint with the same name as an earlier savepoint, the earlier savepoint is deleted.

SQL1 8-37

Implicit Transaction Processing

Note: A third command is available in iSQL*Plus. The AUTOCOMMIT command can be toggled on or off.
If set to on, each individual DML statement is committed as soon as it is executed. You cannot roll back the
changes. If set to off, the COMMIT statement can still be issued explicitly. Also, the COMMIT statement is
issued when a DDL statement is issued or when you exit from iSQL*Plus.

System Failures
When a transaction is interrupted by a system failure, the entire transaction is automatically rolled back.
This prevents the error from causing unwanted changes to the data and returns the tables to their state at the
time of the last commit. In this way, the Oracle server protects the integrity of the tables.
From iSQL*Plus, a normal exit from the session is accomplished by clicking the Exit button. With
SQL*Plus, a normal exit is accomplished by typing the command EXIT at the prompt. Closing the window
is interpreted as an abnormal exit.

8-37 Copyright © Oracle Corporation, 2001. All rights reserved.

• An automatic commit occurs under the following
circumstances:
– DDL statement is issued
– DCL statement is issued
– Normal exit from iSQL*Plus, without explicitly

issuing COMMIT or ROLLBACK statements

• An automatic rollback occurs under an abnormal
termination of iSQL*Plus or a system failure.

Implicit Transaction Processing

Status Circumstances
Automatic commit DDL statement or DCL statement is issued.

iSQL*Plus exited normally, without explicitly issuing COMMIT or
ROLLBACK commands.

Automatic rollback Abnormal termination of iSQL*Plus or system failure.

SQL1 8-38

8-38 Copyright © Oracle Corporation, 2001. All rights reserved.

State of the Data
Before COMMIT or ROLLBACK

• The previous state of the data can be recovered.
• The current user can review the results of the DML

operations by using the SELECT statement.

• Other users cannot view the results of the DML
statements by the current user.

• The affected rows are locked; other users cannot change
the data within the affected rows.

Committing Changes
Every data change made during the transaction is temporary until the transaction is committed.
State of the data before COMMIT or ROLLBACK statements are issued:

• Data manipulation operations primarily affect the database buffer; therefore, the previous state of the
data can be recovered.

• The current user can review the results of the data manipulation operations by querying the tables.
• Other users cannot view the results of the data manipulation operations made by the current user. The

Oracle server institutes read consistency to ensure that each user sees data as it existed at the last
commit.

• The affected rows are locked; other users cannot change the data in the affected rows.

SQL1 8-39

8-39 Copyright © Oracle Corporation, 2001. All rights reserved.

State of the Data after COMMIT

• Data changes are made permanent in the database.
• The previous state of the data is permanently lost.
• All users can view the results.
• Locks on the affected rows are released; those rows

are available for other users to manipulate.
• All savepoints are erased.

Committing Changes (continued)
Make all pending changes permanent by using the COMMIT statement. Following a COMMIT statement:

• Data changes are written to the database.
• The previous state of the data is permanently lost.
• All users can view the results of the transaction.
• The locks on the affected rows are released; the rows are now available for other users to perform

new data changes.
• All savepoints are erased.

SQL1 8-40

8-40 Copyright © Oracle Corporation, 2001. All rights reserved.

• Make the changes.

• Commit the changes.

DELETE FROM employees
WHERE employee_id = 99999;
1 row deleted.

INSERT INTO departments
VALUES (290, 'Corporate Tax', NULL, 1700);
1 row inserted.

Committing Data

COMMIT;
Commit complete.

Committing Changes (continued)
The slide example deletes a row from the EMPLOYEES table and inserts a new row into the
DEPARTMENTS table. It then makes the change permanent by issuing the COMMIT statement.

Example
Remove departments 290 and 300 in the DEPARTMENTS table, and update a row in the COPY_EMP table.
Make the data change permanent.

DELETE FROM departments
WHERE department_id IN (290, 300);

2 rows deleted.

UPDATE copy_emp
SET department_id = 80
WHERE employee_id = 206;

1 row updated.

COMMIT;

Commit Complete.

SQL1 8-41

8-41 Copyright © Oracle Corporation, 2001. All rights reserved.

State of the Data After ROLLBACK

Discard all pending changes by using the ROLLBACK
statement:
• Data changes are undone.
• Previous state of the data is restored.
• Locks on the affected rows are released.

DELETE FROM copy_emp;
22 rows deleted.
ROLLBACK;
Rollback complete.

Rolling Back Changes
Discard all pending changes by using the ROLLBACK statement. Following a ROLLBACK statement:

• Data changes are undone.
• The previous state of the data is restored.
• The locks on the affected rows are released.

Example
While attempting to remove a record from the TEST table, you can accidentally empty the table. You can
correct the mistake, reissue the proper statement, and make the data change permanent.

DELETE FROM test;
25,000 rows deleted.
ROLLBACK;
Rollback complete.
DELETE FROM test
WHERE id = 100;
1 row deleted.
SELECT *
FROM test
WHERE id = 100;
No rows selected.
COMMIT;
Commit complete.

SQL1 8-42

8-42 Copyright © Oracle Corporation, 2001. All rights reserved.

Statement-Level Rollback

• If a single DML statement fails during execution,
only that statement is rolled back.

• The Oracle server implements an implicit
savepoint.

• All other changes are retained.
• The user should terminate transactions explicitly

by executing a COMMIT or ROLLBACK statement.

Statement-Level Rollbacks
Part of a transaction can be discarded by an implicit rollback if a statement execution error is detected. If a
single DML statement fails during execution of a transaction, it s effect is undone by a statement-level
rollback, but the changes made by the previous DML statements in the transaction are not discarded. They
can be committed or rolled back explicitly by the user.
Oracle issues an implicit commit before and after any data definition language (DDL) statement. So, even if
your DDL statement does not execute successfully, you cannot roll back the previous statement because the
server issued a commit.
Terminate your transactions explicitly by executing a COMMIT or ROLLBACK statement.

SQL1 8-43

Read Consistency
Database users access the database in two ways:

• Read operations (SELECT statement)
• Write operations (INSERT, UPDATE, DELETE statements)

You need read consistency so that the following occur:
• The database reader and writer are ensured a consistent view of the data.
• Readers do not view data that is in the process of being changed.
• Writers are ensured that the changes to the database are done in a consistent way.
• Changes made by one writer do not disrupt or conflict with changes another writer is making.

The purpose of read consistency is to ensure that each user sees data as it existed at the last commit,
before a DML operation started.

8-43 Copyright © Oracle Corporation, 2001. All rights reserved.

Read Consistency

• Read consistency guarantees a consistent view of
the data at all times.

• Changes made by one user do not conflict with
changes made by another user.

• Read consistency ensures that on the same data:
– Readers do not wait for writers.
– Writers do not wait for readers.

SQL1 8-44

8-44 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT *
FROM userA.employees;

Implementation of Read Consistency

UPDATE employees
SET salary = 7000
WHERE last_name = 'Goyal';

Data
blocks

Rollback
segments

changed
and
unchanged
data
before
change
“old” data

User A

User B

Read
consistent
image

Implementation of Read Consistency
Read consistency is an automatic implementation. It keeps a partial copy of the database in rollback
segments.
When an insert, update, or delete operation is made to the database, the Oracle server takes a copy of the
data before it is changed and writes it to a rollback segment.
All readers, except the one who issued the change, still see the database as it existed before the changes
started; they view the rollback segment’s “snapshot” of the data.
Before changes are committed to the database, only the user who is modifying the data sees the database
with the alterations; everyone else sees the snapshot in the rol lback segment. This guarantees that readers of
the data read consistent data that is not currently undergoing change.
When a DML statement is committed, the change made to the database becomes visible to anyone
executing a SELECT statement. The space occupied by the old data in the rollback segment file is freed for
reuse.
If the transaction is rolled back, the changes are undone:

• The original, older version, of the data in the rollback segment is written back to the table.
• All users see the database as it existed before the transaction began.

SQL1 8-45

8-45 Copyright © Oracle Corporation, 2001. All rights reserved.

Locking

In an Oracle database, locks:
• Prevent destructive interaction between

concurrent transactions
• Require no user action
• Automatically use the lowest level of

restrictiveness
• Are held for the duration of the transaction
• Are of two types: explicit locking and implicit

locking

What Are Locks?
Locks are mechanisms that prevent destructive interaction between transactions accessing the same
resource, either a user object (such as tables or rows) or a system object not visible to users (such as shared
data structures and data dictionary rows).
How the Oracle Database Locks Data
Oracle locking is performed automatically and requires no user action. Implicit locking occurs for SQL
statements as necessary, depending on the action requested. Implicit locking occurs for all SQL statements
except SELECT.

The users can also lock data manually, which is called explicit locking.

SQL1 8-46

8-46 Copyright © Oracle Corporation, 2001. All rights reserved.

Implicit Locking

• Two lock modes:
– Exclusive: Locks out other users
– Share: Allows other users to access

• High level of data concurrency:
– DML: Table share, row exclusive
– Queries: No locks required
– DDL: Protects object definitions

• Locks held until commit or rollback

DML Locking
When performing data manipulation language (DML) operations, the Oracle server provides data
concurrency through DML locking. DML locks occur at two levels:

• A share lock is automatically obtained at the table level during DML operations. With share lock
mode, several transactions can acquire share locks on the same resource.

• An exclusive lock is acquired automatically for each row modified by a DML statement. Exclusive
locks prevent the row from being changed by other transactions until the transaction is committed or
rolled back. This lock ensures that no other user can modify the same row at the same time and
overwrite changes not yet committed by another user.

• DDL locks occur when you modify a database object such as a table.

SQL1 8-47

Summary
In this lesson, you should have learned how to manipulate data in the Oracle database by using the
INSERT, UPDATE, and DELETE statements. Control data changes by using the COMMIT, SAVEPOINT,
and ROLLBACK statements.

The Oracle server guarantees a consistent view of data at all times.
Locking can be implicit or explicit.

8-47 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Description

Adds a new row to the table

Modifies existing rows in the table

Removes existing rows from the table

Conditionally inserts or updates data in a table

Makes all pending changes permanent

Is used to rollback to the savepoint marker

Discards all pending data changes

Statement

INSERT

UPDATE

DELETE

MERGE

COMMIT

SAVEPOINT

ROLLBACK

In this lesson, you should have learned how to use DML
statements and control transactions.

SQL1 8-48

8-48 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 8 Overview

This practice covers the following topics:
• Inserting rows into the tables
• Updating and deleting rows in the table
• Controlling transactions

Practice 8 Overview
In this practice, you add rows to the MY_EMPLOYEE table, update and delete data from the table, and
control your transactions.

SQL1 8-49

Practice 8

Insert data into the MY_EMPLOYEE table.
1. Run the statement in the lab8_1.sql script to build the MY_EMPLOYEE table to be used for the lab.

2. Describe the structure of the MY_EMPLOYEE table to identify the column names.

3. Add the first row of data to the MY_EMPLOYEE table from the following sample data. Do not list the
columns in the INSERT clause.

4. Populate the MY_EMPLOYEE table with the second row of sample data from the preceding list. This
time, list the columns explicitly in the INSERT clause.

5. Confirm your addition to the table.

ID LAST_NAME FIRST_NAME USERID SALARY

1 Patel Ralph rpatel 895

2 Dancs Betty bdancs 860

3 Biri Ben bbiri 1100

4 Newman Chad cnewman 750

5 Ropeburn Audrey aropebur 1550

SQL1 8-50

Practice 8 (continued)

6. Write an insert statement in a text file named loademp.sql to load rows into the MY_EMPLOYEE
table. Concatenate the first letter of the first name and the fi rst seven characters of the last name to
produce the user ID.

7. Populate the table with the next two rows of sample data by running the insert statement in the script
that you created.

8. Confirm your additions to the table.

9. Make the data additions permanent.
Update and delete data in the MY_EMPLOYEE table.

10. Change the last name of employee 3 to Drexler.
11. Change the salary to 1000 for all employees with a salary less than 900.
12. Verify your changes to the table.

13. Delete Betty Dancs from the MY_EMPLOYEE table.

14. Confirm your changes to the table.

SQL1 8-51

Practice 8 (continued)

15. Commit all pending changes.

Control data transaction to the MY_EMPLOYEE table.

16. Populate the table with the last row of sample data by modifying the statements in the script that you
created in step 6. Run the statements in the script.

17. Confirm your addition to the table.

18. Mark an intermediate point in the processing of the transaction.
19. Empty the entire table.
20. Confirm that the table is empty.
21. Discard the most recent DELETE operation without discarding the earlier INSERT operation.

22. Confirm that the new row is still intact.

23. Make the data addition permanent.

SQL1 8-52

8-52 Copyright © Oracle Corporation, 2001. All rights reserved.

Output Time Session 1 Session 2

t1

t2

t3

t4

t5

SELECT salary FROM employees
WHERE last_name='King';24000

UPDATE employees
SET salary=salary+10000
WHERE last_name='King';

24000

COMMIT;

34000

SELECT salary FROM employees
WHERE last_name='King';

SELECT salary FROM employees
WHERE last_name='King';

Read Consistency Example

SQL1 8-53

Copyright © Oracle Corporation, 2001. All rights reserved.

Creating and Managing Tables

SQL1 9-2

Lesson Aim
In this lesson, you learn about tables, the main database objects, and their relationships to each other. You
also learn how to create, alter, and drop tables.

9-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Describe the main database objects
• Create tables
• Describe the data types that can be used when

specifying column definition
• Alter table definitions
• Drop, rename, and truncate tables

SQL1 9-3

Database Objects
An Oracle database can contain multiple data structures. Each structure should be outlined in the database
design so that it can be created during the build stage of database development.

• Table: Stores data
• View: Subset of data from one or more tables
• Sequence: Numeric value generator
• Index: Improves the performance of some queries
• Synonym: Gives alternative names to objects

Oracle9i Table Structures
• Tables can be created at any time, even while users are using the database.
• You do not need to specify the size of any table. The size is ultimately defined by the amount of space

allocated to the database as a whole. It is important, however, to estimate how much space a table will use
over time.

• Table structure can be modified online.
Note: More database objects are available but are not covered in this course.

9-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Objects

Object Description
Table Basic unit of storage; composed of rows

and columns

View Logically represents subsets of data from
one or more tables

Sequence Numeric value generator

Index Improves the performance of some queries

Synonym Gives alternative names to objects

SQL1 9-4

Naming Rules
Name database tables and columns according to the standard rules for naming any Oracle database object:

• Table names and column names must begin with a letter and be 1–30 characters long.
• Names must contain only the characters A–Z, a–z, 0–9, _ (underscore), $, and # (legal characters, but

their use is discouraged).
• Names must not duplicate the name of another object owned by the same Oracle server user.
• Names must not be an Oracle server reserved word.

Naming Guidelines
Use descriptive names for tables and other database objects.
Note: Names are case insensitive. For example, EMPLOYEES is treated as the same name as eMPloyees
or eMpLOYEES.

For more information, see Oracle9i SQL Reference,“Object Names and Qualifiers.”

9-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Rules

Table names and column names:
• Must begin with a letter
• Must be 1–30 characters long
• Must contain only A–Z, a–z, 0–9, _, $, and #
• Must not duplicate the name of another object

owned by the same user
• Must not be an Oracle server reserved word

SQL1 9-5

The CREATE TABLE Statement
Create tables to store data by executing the SQL CREATE TABLE statement. This statement is one of the
data definition language (DDL) statements, that are covered in subsequent lessons. DDL statements are a
subset of SQL statements used to create, modify, or remove Oracle9i database structures. These statements
have an immediate effect on the database, and they also record information in the data dictionary.
To create a table, a user must have the CREATE TABLE privilege and a storage area in which to create
objects. The database administrator uses data control language (DCL) statements, which are covered in a
later lesson, to grant privileges to users.
In the syntax:

schema is the same as the owner’s name
table is the name of the table
DEFAULT expr specifies a default value if a value is omitted in the INSERT statement
column is the name of the column
datatype is the column’s data type and length

9-5 Copyright © Oracle Corporation, 2001. All rights reserved.

The CREATE TABLE Statement

• You must have:
– CREATE TABLE privilege

– A storage area

• You specify:
– Table name
– Column name, column data type, and column size

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr][, ...]);

SQL1 9-6

9-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Referencing Another User’s Tables

• Tables belonging to other users are not in the
user’s schema.

• You should use the owner’s name as a prefix to
those tables.

Referencing Another User’s Tables
A schema is a collection of objects. Schema objects are the logical structures that directly refer to the data in a
database. Schema objects include tables, views, synonyms, sequences, stored procedures, indexes, clusters, and
database links.
If a table does not belong to the user, the owner’s name must be prefixed to the table. For example, if there is a
schema named USER_B, and USER_B has an EMPLOYEES table, then specify the following to retrieve data
from that table:

SELECT *
FROM user_b.employees;

SQL1 9-7

9-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The DEFAULT Option

• Specify a default value for a column during an
insert.

• Literal values, expressions, or SQL functions are
legal values.

• Another column’s name or a pseudocolumn are
illegal values.

• The default data type must match the column data
type.

... hire_date DATE DEFAULT SYSDATE, ...

The DEFAULT Option
A column can be given a default value by using the DEFAULT option. This option prevents null values
from entering the columns if a row is inserted without a value for the column. The default value can be a
literal, an expression, or a SQL function, such as SYSDATE and USER, but the value cannot be the name of
another column or a pseudocolumn, such as NEXTVAL or CURRVAL. The default expression must match
the data type of the column.
Note: CURRVAL and NEXTVAL are explained later.

SQL1 9-8

9-8 Copyright © Oracle Corporation, 2001. All rights reserved.

• Create the table.

• Confirm table creation.

Creating Tables

CREATE TABLE dept
(deptno NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(13));

Table created.

DESCRIBE dept

Creating Tables
The example on the slide creates the DEPT table, with three columns: DEPTNO, DNAME, and LOC. It
further confirms the creation of the table by issuing the DESCRIBE command.

Since creating a table is a DDL statement, an automatic commit takes place when this statement is
executed.

SQL1 9-9

9-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Tables in the Oracle Database

• User Tables:
– Are a collection of tables created and maintained by

the user
– Contain user information

• Data Dictionary:
– Is a collection of tables created and maintained by

the Oracle Server
– Contain database information

Tables in the Oracle Database
User tables are tables created by the user, such as EMPLOYEES. There is another collection of tables and
views in the Oracle database known as the data dictionary. This collection is created and maintained by the
Oracle server and contains information about the database.
All data dictionary tables are owned by the SYS user. The base tables are rarely accessed by the user
because the information in them is not easy to understand. Therefore, users typically access data dictionary
views because the information is presented in a format that is easier to understand. Information stored in the
data dictionary includes names of the Oracle server users, privileges granted to users, database object
names, table constraints, and auditing information.
There are four categories of data dictionary views; each category has a distinct prefix that reflects its
intended use.

Prefix Description
USER_ These views contain information about objects owned by the user

ALL_ These views contain information about all of the tables (object tables
and relational tables) accessible to the user.

DBA_ These views are restricted views, which can be accessed only by
people who have been assigned the DBA role.

V$ These views are dynamic performance views, database server
performance, memory, and locking.

SQL1 9-10

9-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Querying the Data Dictionary

• View distinct object types owned by the user.

• View tables, views, synonyms, and sequences owned by
the user.

SELECT table_name
FROM user_tables;

SELECT DISTINCT object_type
FROM user_objects;

SELECT *
FROM user_catalog;

• See the names of tables owned by the user.

Querying the Data Dictionary
You can query the data dictionary tables to view various database objects owned by you. The data
dictionary tables frequently used are these:
• USER_TABLES
• USER_OBJECTS
• USER_CATALOG

Note: USER_CATALOG has a synonym called CAT. You can use this synonym instead of
USER_CATALOG in SQL statements.

SELECT *
FROM CAT;

SQL1 9-11

9-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Types
Data Type Description

VARCHAR2(size) Variable-length character data

CHAR(size) Fixed-length character data

NUMBER(p,s) Variable-length numeric data

DATE Date and time values

LONG Variable-length character data
up to 2 gigabytes

CLOB Character data up to 4
gigabytes

RAW and LONG RAW Raw binary data

BLOB Binary data up to 4 gigabytes

BFILE Binary data stored in an external
file; up to 4 gigabytes

ROWID A 64 base number system representing
the unique address of a row in its table.

Data Types

Data type Description

VARCHAR2(size)

Variable-length character data (a maximum size must be specified:
Minimum size is 1; maximum size is 4000)

CHAR [(size)] Fixed-length character data of length size bytes (default and minimum
size is 1; maximum size is 2000)

NUMBER [(p,s)] Number having precision p and scale s (The precision is the total
number of decimal digits, and the scale is the number of digits to the
right of the decimal point; the precision can range from 1 to 38 and
the scale can range from -84 to 127)

DATE Date and time values to the nearest second between January 1, 4712
B.C., and December 31, 9999 A.D.

LONG Variable-length character data up to 2 gigabytes

CLOB Character data up to 4 gigabytes

SQL1 9-12

Data Types (continued)

• A LONG column is not copied when a table is created using a subquery.
• A LONG column cannot be included in a GROUP BY or an ORDER BY clause.
• Only one LONG column can be used per table.
• No constraints can be defined on a LONG column.
• You may want to use a CLOB column rather than a LONG column.

Data type Description

RAW(size) Raw binary data of length size (a maximum size must be specified.
maximum size is 2000)

LONG RAW Raw binary data of variable length up to 2 gigabytes

BLOB Binary data up to 4 gigabytes

BFILE Binary data stored in an external file; up to 4 gigabytes

ROWID A 64 base number system representing the unique address of a row
in its table.

SQL1 9-13

9-13 Copyright © Oracle Corporation, 2001. All rights reserved.

DateTime Data Types

Data Type Description
TIMESTAMP Date with fractional seconds
INTERVAL YEAR TO MONTH Stored as an interval of years

and months
INTERVAL DAY TO SECOND Stored as an interval of days to

hours minutes and seconds

Datetime enhancements with Oracle9i:
• New Datetime data types have been introduced.
• New data type storage is available.
• Enhancements have been made to time zones

and local time zone.

Other DateTime Data Types

Data Type Description
TIMESTAMP Allows the time to be stored as a date with fractional seconds. There are

several variations of the data type.
INTERVAL YEAR TO
MONTH

Allows time to be stored as an interval of years and months.

INTERVAL DAY TO
SECOND

Allows time to be stored as an interval of days to hours, minutes, and
seconds.

SQL1 9-14

9-14 Copyright © Oracle Corporation, 2001. All rights reserved.

DateTime Data Types

• The TIMESTAMP data type is an extension of the
DATE data type.

• It stores the year, month, and day of the DATE
data type, plus hour, minute, and second values as
well as the fractional second value.

• The TIMESTAMP data type is specified as follows:

TIMESTAMP[(fractional_seconds_precision)]

DateTime Data Types
The fractional_seconds_precision optionally specifies the number of digits in the fractional
part of the SECOND datetime field and can be a number in the range 0 to 9. The default is 6.

Example
CREATE TABLE new_employees
(employee_id NUMBER,
first_name VARCHAR2(15),
last_name VARCHAR2(15),
...
start_date TIMESTAMP(7),
...);

In the preceding example, we are creating a table NEW_EMPLOYEES with a column start_date with a
data type of TIMESTAMP. The precision of '7' indicates the fractional seconds precision which if not
specified defaults to '6'.
Assume that two rows are inserted into the NEW_EMPLOYEES table. The output shows the differences in
the display. (A DATE data type defaults to display the format of DD-MON-RR):

SELECT start_date FROM new_employees;

17-JUN-87 12.00.00.000000 AM
21-SEP-89 12.00.00.000000 AM

SQL1 9-15

9-15 Copyright © Oracle Corporation, 2001. All rights reserved.

TIMESTAMP WITH TIME ZONE Data Type

• TIMESTAMP WITH TIME ZONE is a variant of
TIMESTAMP that includes a time zone
displacement in its value.

• The time zone displacement is the difference, in
hours and minutes, between local time and UTC.

TIMESTAMP[(fractional_seconds_precision)]
WITH TIME ZONE

Datetime Data Types
UTC stands for Coordinated Universal Time— formerly Greenwich Mean Time. Two TIMESTAMP WITH
TIME ZONE values are considered identical if they represent the same instant in UTC, regardless of the
TIME ZONE offsets stored in the data.

For example,
TIMESTAMP '1999-04-15 8:00:00 -8:00'

is the same as
TIMESTAMP '1999-04-15 11:00:00 -5:00'

That is, 8:00 a.m. Pacific Standard Time is the same as 11:00 a.m. Eastern Standard Time.
This can also be specified as

TIMESTAMP '1999-04-15 8:00:00 US/Pacific'
Note: fractional_seconds_precision optionally specifies the number of digits in the fractional
part of the SECOND datetime field and can be a number in the range 0 to 9. The default is 6.

SQL1 9-16

9-16 Copyright © Oracle Corporation, 2001. All rights reserved.

TIMESTAMP WITH LOCAL TIME Data Type

• TIMESTAMP WITH LOCAL TIME ZONE is another
variant of TIMESTAMP that includes a time zone
displacement in its value.

• Data stored in the database is normalized to the
database time zone.

• The time zone displacement is not stored as part
of the column data; Oracle returns the data in the
users' local session time zone.

• TIMESTAMP WITH LOCAL TIME ZONE data type is
specified as follows:
TIMESTAMP[(fractional_seconds_precision)]
WITH LOCAL TIME ZONE

DateTime Data Types
Unlike TIMESTAMP WITH TIME ZONE, you can specify columns of type TIMESTAMP WITH LOCAL
TIME ZONE as part of a primary or unique key. The time zone displacement is the difference (in hours and
minutes) between local time and UTC. There is no literal for TIMESTAMP WITH LOCAL TIME ZONE .
Note: fractional_seconds_precision optionally specifies the number of digits in the fractional
part of the SECOND datetime field and can be a number in the range 0 to 9. The default is 6.

Example
CREATE TABLE time_example as (order_date TIMESTAMP
WITH LOCAL TIME ZONE);

INSERT INTO time_example VALUES('15-NOV-00 09:34:28 AM');

SELECT * FROM time_example;

order_date

15-NOV-00 09.34.28 AM

SQL1 9-17

9-17 Copyright © Oracle Corporation, 2001. All rights reserved.

INTERVAL YEAR TO MONTH Data Type

• INTERVAL YEAR TO MONTH stores a period of time
using the YEAR and MONTH datetime fields.

INTERVAL YEAR [(year_precision)] TO MONTH

• Example:

INTERVAL '312-2' YEAR(3) TO MONTH
Indicates an interval of 312 years and 2 months

INTERVAL '312' YEAR(3)
Indicates 312 years and 0 months

INTERVAL '300' MONTH(3)
Indicates an interval of 300 months

INTERVAL YEAR TO MONTH Data Type
INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields.
Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH
In the syntax:

year_precision is the number of digits in the YEAR datetime field. The default value of
year_precision is 2.

Restriction: The leading field must be more significant than the trailing field. For example, INTERVAL
'0-1' MONTH TO YEAR is not valid.

SQL1 9-18

9-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Table
by Using a Subquery Syntax

• Create a table and insert rows by combining the
CREATE TABLE statement and the AS subquery
option.

• Match the number of specified columns to the
number of subquery columns.

• Define columns with column names and
default values.

CREATE TABLE table
[(column, column...)]

AS subquery;

Creating a Table from Rows in Another Table
A second method for creating a table is to apply the AS subquery clause, which both creates the table
and inserts rows returned from the subquery.
In the syntax:

table is the name of the table
column is the name of the column, default value, and integrity constraint
subquery is the SELECT statement that defines the set of rows to be inserted into

the new table

Guidelines
• The table is created with the specified column names, and the rows retrieved by the SELECT

statement are inserted into the table.
• The column definition can contain only the column name and default value.
• If column specifications are given, the number of columns must equal the number of columns in the

subquery SELECT list.

• If no column specifications are given, the column names of the table are the same as the column
names in the subquery.

• The integrity rules are not passed onto the new table, only the column data type definitions.

SQL1 9-19

9-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Table by Using a Subquery

DESCRIBE dept80

CREATE TABLE dept80
AS

SELECT employee_id, last_name,
salary*12 ANNSAL,
hire_date

FROM employees
WHERE department_id = 80;

Table created.

Creating a Table from Rows in Another Table (continued)
The slide example creates a table named DEPT80, which contains details of all the employees working in
department 80. Notice that the data for the DEPT80 table comes from the EMPLOYEES table.

You can verify the existence of a database table and check column definitions by using the iSQL*Plus
DESCRIBE command.
Be sure to give a column alias when selecting an expression. The expression SALARY*12 is given the alias
ANNSAL. Without the alias, this error is generated:

ERROR at line 3:
ORA-00998: must name this expression with a column alias

SQL1 9-20

The ALTER TABLE Statement

After you create a table, you may need to change the table structure because: you omitted a column, your
column definition needs to be changed, or you need to remove columns. You can do this by using the
ALTER TABLE statement.

9-20 Copyright © Oracle Corporation, 2001. All rights reserved.

The ALTER TABLE Statement

Use the ALTER TABLE statement to:

• Add a new column
• Modify an existing column
• Define a default value for the new column
• Drop a column

SQL1 9-21

9-21 Copyright © Oracle Corporation, 2001. All rights reserved.

The ALTER TABLE Statement

Use the ALTER TABLE statement to add, modify, or
drop columns.

ALTER TABLE table
ADD (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
MODIFY (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
DROP (column);

The ALTER TABLE Statement (continued)
You can add, modify, and drop columns to a table by using the ALTER TABLE statement.

In the syntax:
table is the name of the table
ADD|MODIFY|DROP is the type of modification
column is the name of the new column
datatype is the data type and length of the new column
DEFAULT expr specifies the default value for a new column

Note: The slide gives the abridged syntax for ALTER TABLE. More about ALTER TABLE is covered in a
subsequent lesson.

SQL1 9-22

9-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding a Column

DEPT80

“Add a new
column to
the DEPT80
table.”

DEPT80

New column

Adding a Column
The graphic adds the JOB_ID column to the DEPT80 table. Notice that the new column becomes the last
column in the table.

SQL1 9-23

Guidelines for Adding a Column
• You can add or modify columns.
• You cannot specify where the column is to appear. The new column becomes the last column.

The example on the slide adds a column named JOB_ID to the DEPT80 table. The JOB_ID column
becomes the last column in the table.
Note: If a table already contains rows when a column is added, then the new column is initially null for all
the rows.

9-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding a Column

• You use the ADD clause to add columns.

• The new column becomes the last column.

ALTER TABLE dept80
ADD (job_id VARCHAR2(9));
Table altered.

SQL1 9-24

Modifying a Column
You can modify a column definition by using the ALTER TABLE statement with the MODIFY clause.
Column modification can include changes to a column’s data type, size, and default value.

Guidelines
• You can increase the width or precision of a numeric column.
• You can increase the width of numeric or character columns.
• You can decrease the width of a column only if the column contains only null values or if the table

has no rows.
• You can change the data type only if the column contains null values.
• You can convert a CHAR column to the VARCHAR2 data type or convert a VARCHAR2 column to the

CHAR data type only if the column contains null values or if you do not change the size.

• A change to the default value of a column affects only subsequent insertions to the table.

9-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Modifying a Column

• You can change a column’s data type, size, and
default value.

• A change to the default value affects only
subsequent insertions to the table.

ALTER TABLE dept80
MODIFY (last_name VARCHAR2(30));
Table altered.

SQL1 9-25

Dropping a Column
You can drop a column from a table by using the ALTER TABLE statement with the DROP COLUMN
clause. This is a feature available in Oracle8i and later.

Guidelines
• The column may or may not contain data.
• Using the ALTER TABLE statement, only one column can be dropped at a time.

• The table must have at least one column remaining in it after it is altered.
• Once a column is dropped, it cannot be recovered.

9-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Dropping a Column

Use the DROP COLUMN clause to drop columns you no
longer need from the table.

ALTER TABLE dept80
DROP COLUMN job_id;
Table altered.

SQL1 9-26

The SET UNUSED Option
The SET UNUSED option marks one or more columns as unused so that they can be dropped when the
demand on system resources is lower. This is a feature available in Oracle8i and later. Specifying this
clause does not actually remove the target columns from each row in the table (that is, it does not restore the
disk space used by these columns). Therefore, the response time is faster than if you executed the DROP
clause. Unused columns are treated as if they were dropped, even though their column data remains in the
table’s rows. After a column has been marked as unused, you have no access to that column. A SELECT *
query will not retrieve data from unused columns. In addition, the names and types of columns marked
unused will not be displayed during a DESCRIBE, and you can add to the table a new column with the
same name as an unused column. SET UNUSED information is stored in the USER_UNUSED_COL_TABS
dictionary view.

The DROP UNUSED COLUMNS Option
DROP UNUSED COLUMNS removes from the table all columns currently marked as unused. You can use
this statement when you want to reclaim the extra disk space from unused columns in the table. If the table
contains no unused columns, the statement returns with no errors .

ALTER TABLE dept80
SET UNUSED (last_name);
Table altered.

ALTER TABLE dept80
DROP UNUSED COLUMNS;
Table altered.

9-26 Copyright © Oracle Corporation, 2001. All rights reserved.

The SET UNUSED Option

• You use the SET UNUSED option to mark one or
more columns as unused.

• You use the DROP UNUSED COLUMNS option to
remove the columns that are marked as unused.

ALTER TABLE table
(column);

ALTER TABLE table
COLUMN column;

OR

ALTER TABLE table
DROP UNUSED COLUMNS;

SET UNUSED

SET UNUSED

SQL1 9-27

9-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Dropping a Table

• All data and structure in the table is deleted.
• Any pending transactions are committed.
• All indexes are dropped.
• You cannot roll back the DROP TABLE statement.

DROP TABLE dept80;
Table dropped.

Dropping a Table
The DROP TABLE statement removes the definition of an Oracle table. When you drop a table, the database
loses all the data in the table and all the indexes associated with it.
Syntax

DROP TABLE table
In the syntax:

table is the name of the table

Guidelines
• All data is deleted from the table.
• Any views and synonyms remain but are invalid.
• Any pending transactions are committed.
• Only the creator of the table or a user with the DROP ANY TABLE privilege can remove a table.

Note: The DROP TABLE statement, once executed, is irreversible. The Oracle server does not question the
action when you issue the DROP TABLE statement. If you own that table or have a high-level privilege,
then the table is immediately removed. As with all DDL statements, DROP TABLE is committed
automatically.

SQL1 9-28

9-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Changing the Name of an Object

• To change the name of a table, view, sequence, or
synonym, you execute the RENAME statement.

• You must be the owner of the object.

RENAME dept TO detail_dept;
Table renamed.

Renaming a Table
Additional DDL statements include the RENAME statement, which is used to rename a table, view,
sequence, or a synonym.
Syntax
RENAME old_name TO new_name;

In the syntax:
old_name is the old name of the table, view, sequence, or synonym.
new_name is the new name of the table, view, sequence, or synonym.

You must be the owner of the object that you rename.

SQL1 9-29

9-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Truncating a Table

• The TRUNCATE TABLE statement:
– Removes all rows from a table
– Releases the storage space used by that table

• You cannot roll back row removal when using
TRUNCATE.

• Alternatively, you can remove rows by using the
DELETE statement.

TRUNCATE TABLE detail_dept;
Table truncated.

Truncating a Table
Another DDL statement is the TRUNCATE TABLE statement, which is used to remove all rows from a table
and to release the storage space used by that table. When using the TRUNCATE TABLE statement, you
cannot roll back row removal.
Syntax

TRUNCATE TABLE table;
In the syntax:

table is the name of the table
You must be the owner of the table or have DELETE TABLE system privileges to truncate a table.
The DELETE statement can also remove all rows from a table, but it does not release storage space. The
TRUNCATE command is faster. Removing rows with the TRUNCATE statement is faster than removing
them with the DELETE statement for the following reasons:

• The TRUNCATE statement is a data definition language (DDL) statement and generates no rollback
information.

• Truncating a table does not fire the delete triggers of the table.
• If the table is the parent of a referential integrity constraint, you cannot truncate the table. Disable the

constraint before issuing the TRUNCATE statement.

SQL1 9-30

9-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding Comments to a Table

• You can add comments to a table or column by using
the COMMENT statement.

• Comments can be viewed through the data dictionary
views:
– ALL_COL_COMMENTS
– USER_COL_COMMENTS
– ALL_TAB_COMMENTS
– USER_TAB_COMMENTS

COMMENT ON TABLE employees
IS 'Employee Information';
Comment created.

Adding a Comment to a Table
You can add a comment of up to 2,000 bytes about a column, table, view, or snapshot by using the
COMMENT statement. The comment is stored in the data dictionary and can be viewed in one of the
following data dictionary views in the COMMENTS column:
• ALL_COL_COMMENTS
• USER_COL_COMMENTS
• ALL_TAB_COMMENTS
• USER_TAB_COMMENTS

Syntax

COMMENT ON TABLE table | COLUMN table.column
IS 'text';

In the syntax:
table is the name of the table
column is the name of the column in a table
text is the text of the comment

You can drop a comment from the database by setting it to empty string (''):
COMMENT ON TABLE employees IS ' ';

SQL1 9-31

Summary
In this lesson, you should have learned how to use DDL commands to create, alter, drop, and rename
tables. You also learned how to truncate a table and add comments to a table.
CREATE TABLE

• Create a table.
• Create a table based on another table by using a subquery.

ALTER TABLE
• Modify table structures.
• Change column widths, change column data types, and add columns.

DROP TABLE
• Remove rows and a table structure.
• Once executed, this statement cannot be rolled back.

RENAME
• Rename a table, view, sequence, or synonym.

TRUNCATE
• Remove all rows from a table and release the storage space used by the table.
• The DELETE statement removes only rows.

COMMENT
• Add a comment to a table or a column.
• Query the data dictionary to view the comment.

9-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Statement Description

CREATE TABLE Creates a table

ALTER TABLE Modifies table structures

DROP TABLE Removes the rows and table structure

RENAME Changes the name of a table, view,
sequence, or synonym

TRUNCATE Removes all rows from a table and
releases the storage space

COMMENT Adds comments to a table or view

In this lesson, you should have learned how to use DDL
statements to create, alter, drop, and rename tables.

SQL1 9-32

9-32 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 9 Overview

This practice covers the following topics:
• Creating new tables
• Creating a new table by using the CREATE TABLE

AS syntax

• Modifying column definitions
• Verifying that the tables exist
• Adding comments to tables
• Dropping tables
• Altering tables

Practice 9 Overview
Create new tables by using the CREATE TABLE statement. Confirm that the new table was added to the
database. Create the syntax in the command file, and then execute the command file to create the table.

SQL1 9-33

Practice 9

1. Create the DEPT table based on the following table instance chart. Place the
syntax in a script called lab9_1.sql, then execute the statement in the script to create the table.
Confirm that the table is created.

2. Populate the DEPT table with data from the DEPARTMENTS table. Include only columns that
you need.

3. Create the EMP table based on the following table instance chart. Place the syntax in
a script called lab9_3.sql, and then execute the statement in the script to create the table. Confirm
that the table is created.

Column Name ID NAME

Key Type

Nulls/Unique

FK Table

FK Column

Data type NUMBER VARCHAR2

Length 7 25

Column Name ID LAST_NAME FIRST_NAME DEPT_ID

Key Type

Nulls/Unique

FK Table

FK Column

Data type NUMBER VARCHAR2 VARCHAR2 NUMBER

Length 7 25 25 7

SQL1 9-34

Practice 9 (continued)

4. Modify the EMP table to allow for longer employee last names. Confirm your modification.

5. Confirm that both the DEPT and EMP tables are stored in the data dictionary. (Hint:
USER_TABLES)

6. Create the EMPLOYEES2 table based on the structure of the EMPLOYEES table. Include only the
EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY, and DEPARTMENT_ID columns. Name
the columns in your new table ID, FIRST_NAME, LAST_NAME, SALARY , and DEPT_ID,
respectively.

7. Drop the EMP table.
8. Rename the EMPLOYEES2 table as EMP.
9. Add a comment to the DEPT and EMP table definitions describing the tables. Confirm your

additions in the data dictionary.
10. Drop the FIRST_NAME column from the EMP table. Confirm your modification by checking the

description of the table.
11. In the EMP table, mark the DEPT_ID column in the EMP table as UNUSED. Confirm your

modification by checking the description of the table.
12. Drop all the UNUSED columns from the EMP table. Confirm your modification by checking the

description of the table.

Copyright © Oracle Corporation, 2001. All rights reserved.

Including Constraints

SQL1 10-2

Lesson Aim
In this lesson, you learn how to implement business rules by including integrity constraints.

10-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Describe constraints
• Create and maintain constraints

SQL1 10-3

Constraints
The Oracle Server uses constraints to prevent invalid data entry into tables.
You can use constraints to do the following:

• Enforce rules on the data in a table whenever a row is inserted, updated, or deleted from that table.
The constraint must be satisfied for the operation to succeed.

• Prevent the deletion of a table if there are dependencies from other tables
• Provide rules for Oracle tools, such as Oracle Developer

Data Integrity Constraints

For more information, see Oracle9i SQL Reference, “CONSTRAINT.”

10-3 Copyright © Oracle Corporation, 2001. All rights reserved.

What are Constraints?

• Constraints enforce rules at the table level.
• Constraints prevent the deletion of a table if there are

dependencies.
• The following constraint types are valid:

– NOT NULL
– UNIQUE
– PRIMARY KEY
– FOREIGN KEY
– CHECK

Constraint Description

NOT NULL Specifies that the column cannot contain a null value

UNIQUE Specifies a column or combination of columns whose values must be
unique for all rows in the table

PRIMARY KEY Uniquely identifies each row of the table

FOREIGN KEY Establishes and enforces a foreign key relationship between the
column and a column of the referenced table

CHECK Specifies a condition that must be true

SQL1 10-4

Constraint Guidelines
All constraints are stored in the data dictionary. Constraints are easy to reference if you give them a
meaningful name. Constraint names must follow the standard object-naming rules. If you do not name your
constraint, the Oracle server generates a name with the format SYS_Cn, where n is an integer so that the
constraint name is unique.
Constraints can be defined at the time of table creation or after the table has been created.
You can view the constraints defined for a specific table by looking at the USER_CONSTRAINTS data
dictionary table.

10-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Constraint Guidelines

• Name a constraint or the Oracle server generates a
name by using the SYS_Cn format.

• Create a constraint either:
– At the same time as the table is created, or
– After the table has been created

• Define a constraint at the column or table level.
• View a constraint in the data dictionary.

SQL1 10-5

10-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining Constraints

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr]
[column_constraint],
...
[table_constraint][,...]);

CREATE TABLE employees(
employee_id NUMBER(6),
first_name VARCHAR2(20),
...
job_id VARCHAR2(10) NOT NULL,
CONSTRAINT emp_emp_id_pk

PRIMARY KEY (EMPLOYEE_ID));

Defining Constraints
The slide gives the syntax for defining constraints while creating a table.
In the syntax:

schema is the same as the owner’s name
table is the name of the table
DEFAULT expr specifies a default value to use if a value is omitted in the INSERT

statement
column is the name of the column
datatype is the column’s data type and length
column_constraint is an integrity constraint as part of the column definition
table_constraint is an integrity constraint as part of the table definition

For more information, see Oracle9i SQL Reference, “CREATE TABLE.”

SQL1 10-6

Defining Constraints (continued)
Constraints are usually created at the same time as the table. Constraints can be added to a table after its
creation and also temporarily disabled.
Constraints can be defined at one of two levels.

In the syntax:
constraint_name is the name of the constraint
constraint_type is the type of the constraint

10-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining Constraints

• Column constraint level

• Table constraint level

column [CONSTRAINT constraint_name] constraint_type,

column,...
[CONSTRAINT constraint_name] constraint_type
(column, ...),

Constraint
Level

Description

Column References a single column and is defined within a specification for the
owning column; can define any type of integrity constraint

Table References one or more columns and is defined separately from the definitions
of the columns in the table; can define any constraints except NOT NULL

SQL1 10-7

The NOT NULL Constraint
The NOT NULL constraint ensures that the column contains no null values. Columns withou t the NOT
NULL constraint can contain null values by default.

10-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The NOT NULL Constraint

Ensures that null values are not permitted for the
column:

NOT NULL constraint
(No row can contain
a null value for
this column.)

Absence of NOT NULL
constraint
(Any row can contain
null for this column.)

NOT NULL
constraint

SQL1 10-8

The NOT NULL Constraint (continued)
The NOT NULL constraint can be specified only at the column level, not at the table level.
The slide example applies the NOT NULL constraint to the LAST_NAME and HIRE_DATE columns of the
EMPLOYEES table. Because these constraints are unnamed, the Oracle server creates names for them.

You can specify the name of the constraint when you specify the constraint:

... last_name VARCHAR2(25)
CONSTRAINT emp_last_name_nn NOT NULL...

Note: The constraint examples described in this lesson may not be present in the sample tables provided
with the course. If desired, these constraints can be added to the tables.

10-8 Copyright © Oracle Corporation, 2001. All rights reserved.

The NOT NULL Constraint

Is defined at the column level:

System
named

User
named

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE

CONSTRAINT emp_hire_date_nn
NOT NULL,

...

SQL1 10-9

10-9 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNIQUE Constraint

EMPLOYEES
UNIQUE constraint

INSERT INTO

Not allowed:
already exists

Allowed

The UNIQUE Constraint
A UNIQUE key integrity constraint requires that every value in a column or set of columns (key) be
unique— that is, no two rows of a table can have duplicate values in a specified column or set of columns.
The column (or set of columns) included in the definition of the UNIQUE key constraint is called the
unique key. If the UNIQUE constraint comprises more than one column, that group of columns is called a
composite unique key.
UNIQUE constraints allow the input of nulls unless you also define NOT NULL constraints for the same
columns. In fact, any number of rows can include nulls for columns without NOT NULL constraints
because nulls are not considered equal to anything. A null in a column (or in all columns of a composite
UNIQUE key) always satisfies a UNIQUE constraint.
Note: Because of the search mechanism for UNIQUE constraints on more than one column, you cannot
have identical values in the non-null columns of a partially null composite UNIQUE key constraint.

SQL1 10-10

10-10 Copyright © Oracle Corporation, 2001. All rights reserved.

The UNIQUE Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,

...
CONSTRAINT emp_email_uk UNIQUE(email));

The UNIQUE Constraint (continued)
UNIQUE constraints can be defined at the column or table level. A composite unique key is created by
using the table level definition.
The example on the slide applies the UNIQUE constraint to the EMAIL column of the EMPLOYEES table.
The name of the constraint is EMP_EMAIL_UK..
Note: The Oracle server enforces the UNIQUE constraint by implicitly creating a unique index on the
unique key column or columns.

SQL1 10-11

10-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The PRIMARY KEY Constraint

DEPARTMENTS
PRIMARY KEY

INSERT INTO
Not allowed
(Null value)

Not allowed
(50 already exists)

The PRIMARY KEY Constraint
A PRIMARY KEY constraint creates a primary key for the table. Only one primary key can be created for
each table. The PRIMARY KEY constraint is a column or set of columns that uniquely identifies each row
in a table. This constraint enforces uniqueness of the column or column combination and ensures that no
column that is part of the primary key can contain a null value.

SQL1 10-12

10-12 Copyright © Oracle Corporation, 2001. All rights reserved.

The PRIMARY KEY Constraint

Defined at either the table level or the column level:

CREATE TABLE departments(
department_id NUMBER(4),
department_name VARCHAR2(30)
CONSTRAINT dept_name_nn NOT NULL,

manager_id NUMBER(6),
location_id NUMBER(4),
CONSTRAINT dept_id_pk PRIMARY KEY(department_id));

The PRIMARY KEY Constraint (continued)
PRIMARY KEY constraints can be defined at the column level or table level. A composite PRIMARY KEY
is created by using the table-level definition.
A table can have only one PRIMARY KEY constraint but can have several UNIQUE constraints.
The example on the slide defines a PRIMARY KEY constraint on the DEPARTMENT_ID column of the
DEPARTMENTS table. The name of the constraint is DEPT_ID_PK.
Note: A UNIQUE index is automatically created for a PRIMARY KEY column.

SQL1 10-13

10-13 Copyright © Oracle Corporation, 2001. All rights reserved.

The FOREIGN KEY Constraint
DEPARTMENTS

EMPLOYEES
FOREIGN
KEY

INSERT INTO Not allowed
(9 does not

exist)

Allowed

PRIMARY
KEY

The FOREIGN KEY Constraint
The FOREIGN KEY, or referential integrity constraint, designates a column or combination of columns as a
foreign key and establishes a relationship between a primary key or a unique key in the same table or a
different table. In the example on the slide, DEPARTMENT_ID has been defined as the foreign key in the
EMPLOYEES table (dependent or child table); it references the DEPARTMENT_ID column of the
DEPARTMENTS table (the referenced or parent table).
A foreign key value must match an existing value in the parent table or be NULL.

Foreign keys are based on data values and are purely logical, not physical, pointers.

SQL1 10-14

10-14 Copyright © Oracle Corporation, 2001. All rights reserved.

The FOREIGN KEY Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,

...
department_id NUMBER(4),
CONSTRAINT emp_dept_fk FOREIGN KEY (department_id)
REFERENCES departments(department_id),

CONSTRAINT emp_email_uk UNIQUE(email));

The FOREIGN KEY Constraint (continued)
FOREIGN KEY constraints can be defined at the column or table constraint level. A composite foreign key
must be created by using the table-level definition.
The example on the slide defines a FOREIGN KEY constraint on the DEPARTMENT_ID column of the
EMPLOYEES table, using table-level syntax. The name of the constraint is EMP_DEPTID_FK.

The foreign key can also be defined at the column level, provided the constraint is based on a single
column. The syntax differs in that the keywords FOREIGN KEY do not appear. For example:

CREATE TABLE employees
(...
department_id NUMBER(4) CONSTRAINT emp_deptid_fk

REFERENCES departments(department_id),
...
)

SQL1 10-15

The FOREIGN KEY Constraint (continued)

The foreign key is defined in the child table, and the table containing the referenced column is the parent
table. The foreign key is defined using a combination of the following keywords:
• FOREIGN KEY is used to define the column in the child table at the table constraint level.
• REFERENCES identifies the table and column in the parent table.
• ON DELETE CASCADE indicates that when the row in the parent table is deleted, the dependent rows

in the child table will also be deleted.
• ON DELETE SET NULL converts foreign key values to null when the parent value is removed.

The default behavior is called the restrict rule, which disallows the update or deletion of referenced data.
Without the ON DELETE CASCADE or the ON DELETE SET NULL options, the row in the parent table
cannot be deleted if it is referenced in the child table.

10-15 Copyright © Oracle Corporation, 2001. All rights reserved.

FOREIGN KEY Constraint
Keywords

• FOREIGN KEY: Defines the column in the child
table at the table constraint level

• REFERENCES: Identifies the table and column in the
parent table

• ON DELETE CASCADE: Deletes the dependent rows
in the child table when a row in the parent table is
deleted.

• ON DELETE SET NULL: Converts dependent
foreign key values to null

SQL1 10-16

The CHECK Constraint
The CHECK constraint defines a condition that each row must satisfy. The condition can use the same
constructs as query conditions, with the following exceptions:

• References to the CURRVAL, NEXTVAL, LEVEL, and ROWNUM pseudocolumns
• Calls to SYSDATE, UID, USER, and USERENV functions

• Queries that refer to other values in other rows
A single column can have multiple CHECK constraints which refer to the column in its definition. There is
no limit to the number of CHECK constraints which you can define on a column.
CHECK constraints can be defined at the column level or table level.

CREATE TABLE employees
(...
salary NUMBER(8,2) CONSTRAINT emp_salary_min

CHECK (salary > 0),
...

10-16 Copyright © Oracle Corporation, 2001. All rights reserved.

The CHECK Constraint

• Defines a condition that each row must satisfy
• The following expressions are not allowed:

– References to CURRVAL, NEXTVAL, LEVEL, and ROWNUM
pseudocolumns

– Calls to SYSDATE, UID, USER, and USERENV functions

– Queries that refer to other values in other rows

..., salary NUMBER(2)
CONSTRAINT emp_salary_min

CHECK (salary > 0),...

SQL1 10-17

Adding a Constraint
You can add a constraint for existing tables by using the ALTER TABLE statement with the ADD clause.
In the syntax:

table is the name of the table
constraint is the name of the constraint
type is the constraint type
column is the name of the column affected by the constraint

The constraint name syntax is optional, although recommended. If you do not name your constraints, the
system will generate constraint names.
Guidelines

• You can add, drop, enable, or disable a constraint, but you cannot modify its structure.
• You can add a NOT NULL constraint to an existing column by using the MODIFY clause of the

ALTER TABLE statement.
Note: You can define a NOT NULL column only if the table is empty or if the column has a value for every
row.

10-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding a Constraint Syntax

Use the ALTER TABLE statement to:

• Add or drop a constraint, but not modify its
structure

• Enable or disable constraints
• Add a NOT NULL constraint by using the MODIFY

clause
ALTER TABLE table
ADD [CONSTRAINT constraint] type (column);

SQL1 10-18

Adding a Constraint (continued)
The example on the slide creates a FOREIGN KEY constraint on the EMPLOYEES table. The constraint
ensures that a manager exists as a valid employee in the EMPLOYEES table.

10-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Adding a Constraint

Add a FOREIGN KEY constraint to the EMPLOYEES
table indicating that a manager must already exist as
a valid employee in the EMPLOYEES table.

ALTER TABLE employees
ADD CONSTRAINT emp_manager_fk
FOREIGN KEY(manager_id)
REFERENCES employees(employee_id);

Table altered.

SQL1 10-19

Dropping a Constraint
To drop a constraint, you can identify the constraint name from the USER_CONSTRAINTS and
USER_CONS_COLUMNS data dictionary views. Then use the ALTER TABLE statement with the DROP
clause. The CASCADE option of the DROP clause causes any dependent constraints also to be dropped.

Syntax

ALTER TABLE table
DROP PRIMARY KEY | UNIQUE (column) |

CONSTRAINT constraint [CASCADE];

In the syntax:
table is the name of the table
column is the name of the column affected by the constraint
constraint is the name of the constraint

When you drop an integrity constraint, that constraint is no longer enforced by the Oracle server and is no
longer available in the data dictionary.

10-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Dropping a Constraint

• Remove the manager constraint from the
EMPLOYEES table.

• Remove the PRIMARY KEY constraint on the
DEPARTMENTS table and drop the associated
FOREIGN KEY constraint on the
EMPLOYEES.DEPARTMENT_ID column.

ALTER TABLE employees
DROP CONSTRAINT emp_manager_fk;
Table altered.

ALTER TABLE departments
DROP PRIMARY KEY CASCADE;
Table altered.

SQL1 10-20

Disabling a Constraint
You can disable a constraint without dropping it or re-creating it by using the ALTER TABLE statement
with the DISABLE clause.

Syntax

ALTER TABLE table
DISABLE CONSTRAINT constraint [CASCADE];

In the syntax:
table is the name of the table
constraint is the name of the constraint

Guidelines
• You can use the DISABLE clause in both the CREATE TABLE statement and the ALTER TABLE

statement.
• The CASCADE clause disables dependent integrity constraints.

• Disabling a unique or primary key constraint removes the unique index.

10-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Disabling Constraints

• Execute the DISABLE clause of the ALTER TABLE
statement to deactivate an integrity constraint.

• Apply the CASCADE option to disable dependent
integrity constraints.

ALTER TABLE employees
DISABLE CONSTRAINT emp_emp_id_pk CASCADE;
Table altered.

SQL1 10-21

Enabling a Constraint
You can enable a constraint without dropping it or re-creating it by using the ALTER TABLE statement
with the ENABLE clause.
Syntax

ALTER TABLE table
ENABLE CONSTRAINT constraint;

In the syntax:
table is the name of the table
constraint is the name of the constraint

Guidelines
• If you enable a constraint, that constraint applies to all the data in the table. All the data in the table

must fit the constraint.
• If you enable a UNIQUE key or PRIMARY KEY constraint, a UNIQUE or PRIMARY KEY index is

created automatically.
• You can use the ENABLE clause in both the CREATE TABLE statement and the ALTER TABLE

statement.
• Enabling a primary key constraint that was disabled with the CASCADE option does not enable any

foreign keys that are dependent upon the primary key.

10-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Enabling Constraints

• Activate an integrity constraint currently disabled
in the table definition by using the ENABLE clause.

• A UNIQUE or PRIMARY KEY index is automatically
created if you enable a UNIQUE key or PRIMARY
KEY constraint.

ALTER TABLE employees
ENABLE CONSTRAINT emp_emp_id_pk;
Table altered.

SQL1 10-22

Cascading Constraints
This statement illustrates the usage of the CASCADE CONSTRAINTS clause. Assume table TEST1 is
created as follows:
CREATE TABLE test1 (

pk NUMBER PRIMARY KEY,
fk NUMBER,
col1 NUMBER,
col2 NUMBER,
CONSTRAINT fk_constraint FOREIGN KEY (fk) REFERENCES test1,
CONSTRAINT ck1 CHECK (pk > 0 and col1 > 0),
CONSTRAINT ck2 CHECK (col2 > 0));

An error is returned for the following statements:
ALTER TABLE test1 DROP (pk); -- pk is a parent key
ALTER TABLE test1 DROP (col1); -- col1 is referenced by multicolumn constraint ck1

10-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Cascading Constraints

• The CASCADE CONSTRAINTS clause is used along
with the DROP COLUMN clause.

• The CASCADE CONSTRAINTS clause drops all
referential integrity constraints that refer to the
primary and unique keys defined on the dropped
columns.

• The CASCADE CONSTRAINTS clause also drops all
multicolumn constraints defined on the dropped
columns.

SQL1 10-23

Cascading Constraints (continued)
Submitting the following statement drops column PK, the primary key constraint, the fk_constraint
foreign key constraint, and the check constraint, CK1:

ALTER TABLE test1 DROP (pk) CASCADE CONSTRAINTS;

If all columns referenced by the constraints defined on the dropped columns are also dropped, then
CASCADE CONSTRAINTS is not required. For example, assuming that no other referential constraints
from other tables refer to column PK, it is valid to submit the following statement without the CASCADE
CONSTRAINTS clause:

ALTER TABLE test1 DROP (pk, fk, col1);

10-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Cascading Constraints

Example:

ALTER TABLE test1
DROP (pk) CASCADE CONSTRAINTS;
Table altered.

ALTER TABLE test1
DROP (pk, fk, col1) CASCADE CONSTRAINTS;
Table altered.

SQL1 10-24

Viewing Constraints
After creating a table, you can confirm its existence by issuing a DESCRIBE command. The only
constraint that you can verify is the NOT NULL constraint. To view all constraints on your table, query the
USER_CONSTRAINTS table.
The example on the slide displays the constraints on the EMPLOYEES table.

Note: Constraints that are not named by the table owner receive the system-assigned constraint name. In
constraint type, C stands for CHECK, P for PRIMARY KEY, R for referential integrity, and U for UNIQUE
key. Notice that the NOT NULL constraint is really a CHECK constraint.

10-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing Constraints

Query the USER_CONSTRAINTS table to view all
constraint definitions and names.

SELECT constraint_name, constraint_type,
search_condition

FROM user_constraints
WHERE table_name = 'EMPLOYEES';

SQL1 10-25

Viewing Constraints (continued)
You can view the names of the columns involved in constraints by querying the USER_CONS_COLUMNS
data dictionary view. This view is especially useful for constra ints that use system-assigned names.

10-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Viewing the Columns Associated with
Constraints

View the columns associated with the constraint
names in the USER_CONS_COLUMNS view.

SELECT constraint_name, column_name
FROM user_cons_columns
WHERE table_name = 'EMPLOYEES';

SQL1 10-26

10-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to create
constraints.
• Types of constraints:

– NOT NULL
– UNIQUE
– PRIMARY KEY
– FOREIGN KEY
– CHECK

• You can query the USER_CONSTRAINTS table to view all
constraint definitions and names.

Summary
In this lesson, you should have learned how the Oracle server uses constraints to prevent invalid data entry
into tables. You also learned how to implement the constraints in DDL statements.
The following constraint types are valid:
• NOT NULL
• UNIQUE
• PRIMARY KEY
• FOREIGN KEY
• CHECK

You can query the USER_CONSTRAINTS table to view all constraint definitions and names.

SQL1 10-27

10-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 10 Overview

This practice covers the following topics:
• Adding constraints to existing tables
• Adding more columns to a table
• Displaying information in data dictionary views

Practice 10 Overview
In this practice, you will add constraints and more columns to a table using the statements covered in this
lesson.
Note: It is recommended that you name the constraints that you define during the practices.

SQL1 10-28

Practice 10

1. Add a table-level PRIMARY KEY constraint to the EMP table on the ID column. The constraint
should be named at creation. Name the constraint my_emp_id_pk.
Hint: The constraint is enabled as soon as the ALTER TABLE command executes
successfully.

2. Create a PRIMARY KEY constraint to the DEPT table using the ID column. The constraint should
be named at creation. Name the constraint my_dept_id_pk.
Hint: The constraint is enabled as soon as the ALTER TABLE command executes
successfully.

3. Add a column DEPT_ID to the EMP table. Add a foreign key reference on the EMP table that
ensures that the employee is not assigned to a nonexistent department. Name the constraint
my_emp_dept_id_fk.

4. Confirm that the constraints were added by querying the USER_CONSTRAINTS view. Note the
types and names of the constraints. Save your statement text in a file called lab10_4.sql.

5. Display the object names and types from the USER_OBJECTS data dictionary view for the EMP
and DEPT tables. Notice that the new tables and a new index were created.

If you have time, complete the following exercise:
6. Modify the EMP table. Add a COMMISSION column of NUMBER data type, precision 2, scale 2.

Add a constraint to the commission column that ensures that a commission value is greater than
zero.

Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Views

SQL1 11-2

Lesson Aim
In this lesson, you learn how to create and use views. You also learn to query the relevant data dictionary
object to retrieve information about views. Finally, you learn to create and use inline views, and perform
Top-N analysis using inline views.

11-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able
to do the following:
• Describe a view
• Create, alter the definition of, and drop a view
• Retrieve data through a view
• Insert, update, and delete data through

a view
• Create and use an inline view
• Perform “Top-N” analysis

SQL1 11-3

11-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Objects

Description

Basic unit of storage; composed of rows
and columns

Logically represents subsets of data from
one or more tables

Generates primary key values

Improves the performance of some queries

Alternative name for an object

Object

Table

View

Sequence

Index

Synonym

SQL1 11-4

What Is a View?
You can present logical subsets or combinations of data by creating views of tables. A view is a logical
table based on a table or another view. A view contains no data of its own but is like a window through
which data from tables can be viewed or changed. The tables on which a view is based are called base
tables. The view is stored as a SELECT statement in the data dictionary.

11-4 Copyright © Oracle Corporation, 2001. All rights reserved.

What is a View?

EMPLOYEES Table:

EMPVU80 View

SQL1 11-5

Advantages of Views
• Views restrict access to the data because the view can display selective columns from the table.
• Views can be used to make simple queries to retrieve the results of complicated queries. For

example, views can be used to query information from multiple tables without the user knowing how
to write a join statement.

• Views provide data independence for ad hoc users and application programs. One view can be used
to retrieve data from several tables.

• Views provide groups of users access to data according to their particular criteria.
For more information, see Oracle9i SQL Reference, “CREATE VIEW.”

11-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Why use Views?

• To restrict data access
• To make complex queries easy
• To provide data independence
• To present different views of the same data

SQL1 11-6

Simple Views versus Complex Views
There are two classifications for views: simple and complex. The basic difference is related to the DML
(INSERT, UPDATE, and DELETE) operations.

• A simple view is one that:
– Derives data from only one table
– Contains no functions or groups of data
– Can perform DML operations through the view

• A complex view is one that:
– Derives data from many tables
– Contains functions or groups of data
– Does not always allow DML operations through the view

11-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Simple Views
and Complex Views

Feature Simple Views Complex Views

Number of tables One One or more

Contain functions No Yes

Contain groups of data No Yes

DML operations
through a view Yes Not always

SQL1 11-7

Creating a View
You can create a view by embedding a subquery within the CREATE VIEW statement.

In the syntax:
OR REPLACE re-creates the view if it already exists
FORCE creates the view regardless of whether or not the base tables exist
NOFORCE creates the view only if the base tables exist (This is the default.)
view is the name of the view
alias specifies names for the expressions selected by the view’s query (The

number of aliases must match the number of expressions selected by the
view.)

subquery is a complete SELECT statement (You can use aliases for the columns
in the SELECT list.)

WITH CHECK OPTION specifies that only rows accessible to the view can be inserted or
updated

constraint is the name assigned to the CHECK OPTION constraint
WITH READ ONLY ensures that no DML operations can be performed on this view

11-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View

• You embed a subquery within the CREATE VIEW
statement.

• The subquery can contain complex SELECT
syntax.

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view
[(alias[, alias]...)]

AS subquery
[WITH CHECK OPTION [CONSTRAINT constraint]]
[WITH READ ONLY [CONSTRAINT constraint]];

SQL1 11-8

11-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View

• Create a view, EMPVU80, that contains details of
employees in department 80.

• Describe the structure of the view by using the
iSQL*Plus DESCRIBE command.

DESCRIBE empvu80

CREATE VIEW empvu80
AS SELECT employee_id, last_name, salary

FROM employees
WHERE department_id = 80;

View created.

Creating a View (continued)
The example on the slide creates a view that contains the employee number, last name, and salary for each
employee in department 80.
You can display the structure of the view by using the iSQL*Plus DESCRIBE command.

Guidelines for creating a view:
• The subquery that defines a view can contain complex SELECT syntax, including joins, groups, and

subqueries.
• The subquery that defines the view cannot contain an ORDER BY clause. The ORDER BY clause is

specified when you retrieve data from the view.
• If you do not specify a constraint name for a view created with the WITH CHECK OPTION, the

system assigns a default name in the format SYS_Cn.
• You can use the OR REPLACE option to change the definition of the view without dropping and re-

creating it or regranting object privileges previously granted on it.

SQL1 11-9

11-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a View

• Create a view by using column aliases in the
subquery.

• Select the columns from this view by the given
alias names.

CREATE VIEW salvu50
AS SELECT employee_id ID_NUMBER, last_name NAME,

salary*12 ANN_SALARY
FROM employees
WHERE department_id = 50;

View created.

Creating a View (continued)
You can control the column names by including column aliases within the subquery.
The example on the slide creates a view containing the employee number (EMPLOYEE_ID) with the alias
ID_NUMBER, name (LAST_NAME) with the alias NAME, and annual salary (SALARY) with the alias
ANN_SALARY for every employee in department 50.
As an alternative, you can use an alias after the CREATE statement and prior to the SELECT subquery. The
number of aliases listed must match the number of expressions selected in the subquery.

CREATE VIEW salvu50 (ID_NUMBER, NAME, ANN_SALARY)
AS SELECT employee_id, last_name, salary*12
FROM employees
WHERE department_id = 50;

View created.

SQL1 11-10

11-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data from a View

SELECT *
FROM salvu50;

Retrieving Data from a View
You can retrieve data from a view as you would from any table. You can display either the contents of the
entire view or just specific rows and columns.

SQL1 11-11

11-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Querying a View

USER_VIEWS
EMPVU80

SELECT employee_id,
last_name, salary

FROM employees
WHERE department_id=80;

iSQL*Plus

SELECT *
FROM empvu80;

EMPLOYEES

Oracle Server

Views in the Data Dictionary
Once your view has been created, you can query the data dictionary view called USER_VIEWS to see the
name of the view and the view definition. The text of the SELECT statement that constitutes your view is
stored in a LONG column.

Data Access Using Views
When you access data using a view, the Oracle server performs the following operations:

1. It retrieves the view definition from the data dictionary table USER_VIEWS.

2. It checks access privileges for the view base table.
3. It converts the view query into an equivalent operation on the underlying base table or tables. In

other words, data is retrieved from, or an update is made to, the base tables.

Views in the Data Dictionary

SQL1 11-12

Modifying a View
With the OR REPLACE option, a view can be created even if one exists with this name already, thus
replacing the old version of the view for its owner. This means that the view can be altered without
dropping, re-creating, and regranting object privileges.
Note: When assigning column aliases in the CREATE VIEW clause, remember that the aliases are listed in
the same order as the columns in the subquery.

11-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Modifying a View

• Modify the EMPVU80 view by using CREATE OR
REPLACE VIEW clause. Add an alias for each
column name.

• Column aliases in the CREATE VIEW clause are
listed in the same order as the columns in the
subquery.

CREATE OR REPLACE VIEW empvu80
(id_number, name, sal, department_id)

AS SELECT employee_id, first_name || ' ' || last_name,
salary, department_id

FROM employees
WHERE department_id = 80;

View created.

SQL1 11-13

11-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Complex View

Create a complex view that contains group functions
to display values from two tables.

CREATE VIEW dept_sum_vu
(name, minsal, maxsal, avgsal)

AS SELECT d.department_name, MIN(e.salary),
MAX(e.salary),AVG(e.salary)

FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY d.department_name;

View created.

Creating a Complex View
The example on the slide creates a complex view of department names, minimum salaries, maximum
salaries, and average salaries by department. Note that alternative names have been specified for the view.
This is a requirement if any column of the view is derived from a function or an expression.
You can view the structure of the view by using the iSQL*Plus DESCRIBE command. Display the
contents of the view by issuing a SELECT statement.

SELECT *
FROM dept_sum_vu;

SQL1 11-14

Performing DML Operations on a View
You can perform DML operations on data through a view if those operations follow certain rules.
You can remove a row from a view unless it contains any of the following:

• Group functions
• A GROUP BY clause
• The DISTINCT keyword
• The pseudocolumn ROWNUM keyword

11-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules for Performing
DML Operations on a View

• You can perform DML operations on simple views.
• You cannot remove a row if the view contains the

following:
– Group functions
– A GROUP BY clause
– The DISTINCT keyword
– The pseudocolumn ROWNUM keyword

SQL1 11-15

Performing DML Operations on a View (continued)
You can modify data through a view unless it contains any of the conditions mentioned in the previous slide
or columns defined by expressions— for example, SALARY * 12.

11-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules for Performing
DML Operations on a View

You cannot modify data in a view if it contains:
• Group functions
• A GROUP BY clause
• The DISTINCT keyword
• The pseudocolumn ROWNUM keyword

• Columns defined by expressions

SQL1 11-16

11-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Rules for Performing
DML Operations on a View

You cannot add data through a view if the view
includes:
• Group functions
• A GROUP BY clause
• The DISTINCT keyword
• The pseudocolumn ROWNUM keyword

• Columns defined by expressions
• NOT NULL columns in the base tables that are not

selected by the view

Performing DML Operations on a View (continued)
You can add data through a view unless it contains any of the items listed in the slide or there are NOT
NULL columns without default values in the base table that are not selected by the view. All required values
must be present in the view. Remember that you are adding values directly into the underlying table through
the view.
For more information, see 0racle9i SQL Reference, “CREATE VIEW.”

SQL1 11-17

11-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using the WITH CHECK OPTION Clause

• You can ensure that DML operations performed on
the view stay within the domain of the view by
using the WITH CHECK OPTION clause.

• Any attempt to change the department number for
any row in the view fails because it violates the
WITH CHECK OPTION constraint.

CREATE OR REPLACE VIEW empvu20
AS SELECT *

FROM employees
WHERE department_id = 20
WITH CHECK OPTION CONSTRAINT empvu20_ck;

View created.

Using the WITH CHECK OPTION Clause

It is possible to perform referential integrity checks through views. You can also enforce constraints at the
database level. The view can be used to protect data integrity, but the use is very limited.
The WITH CHECK OPTION clause specifies that INSERTs and UPDATEs performed through the view
cannot create rows which the view cannot select, and therefore i t allows integrity constraints and data
validation checks to be enforced on data being inserted or updated.
If there is an attempt to perform DML operations on rows that the view has not selected, an error is
displayed, with the constraint name if that has been specified.

UPDATE empvu20
SET department_id = 10
WHERE employee_id = 201;

UPDATE empvu20
*

ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

Note: No rows are updated because if the department number were to change to 10, the view would no
longer be able to see that employee. Therefore, with the WITH CHECK OPTION clause, the view can see
only employees in department 20 and does not allow the department number for those employees to be
changed through the view.

SQL1 11-18

11-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Denying DML Operations

• You can ensure that no DML operations occur by
adding the WITH READ ONLY option to your view
definition.

• Any attempt to perform a DML on any row in the
view results in an Oracle server error.

Denying DML Operations
You can ensure that no DML operations occur on your view by creating it with the WITH READ ONLY
option. The example on the slide modifies the EMPVU10 view to prevent any DML operations on the view.

SQL1 11-19

Denying DML Operations
Any attempts to remove a row from a view with a read-only constraint results in an error.

DELETE FROM empvu10
WHERE employee_number = 200;

DELETE FROM empvu10
*

ERROR at line 1:
ORA-01752: cannot delete from view without exactly one key-
preserved table

Any attempt to insert a row or modify a row using the view with a read-only constraint results in Oracle server
error:

01733: virtual column not allowed here.

11-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Denying DML Operations

CREATE OR REPLACE VIEW empvu10
(employee_number, employee_name, job_title)

AS SELECT employee_id, last_name, job_id
FROM employees
WHERE department_id = 10
WITH READ ONLY;

View created.

SQL1 11-20

Removing a View
You use the DROP VIEW statement to remove a view. The statement removes the view definition from the
database. Dropping views has no effect on the tables on which the view was based. Views or other
applications based on deleted views become invalid. Only the creator or a user with the DROP ANY VIEW
privilege can remove a view.
In the syntax:

view is the name of the view

11-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a View

You can remove a view without losing data because a
view is based on underlying tables in the database.

DROP VIEW empvu80;
View dropped.

DROP VIEW view;

SQL1 11-21

Inline Views
An inline view is created by placing a subquery in the FROM clause and giving that subquery an alias. The
subquery defines a data source that can be referenced in the main query. In the following example, the inline
view b returns the details of all department numbers and the maximum salary for each department from the
EMPLOYEES table. The WHERE a.department_id = b.department_id AND a.salary <
b.maxsal clause of the main query displays employee names, salaries, department numbers, and maximum
salaries for all the employees who earn less than the maximum sa lary in their department.

SELECT a.last_name, a.salary, a.department_id, b.maxsal
FROM employees a, (SELECT department_id, max(salary) maxsal

FROM employees
GROUP BY department_id) b

WHERE a.department_id = b.department_id
AND a.salary < b.maxsal;

11-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Inline Views

• An inline view is a subquery with an alias (or
correlation name) that you can use within a SQL
statement.

• A named subquery in the FROM clause of the main
query is an example of an inline view.

• An inline view is not a schema object.

SQL1 11-22

“Top-N” Analysis
Top-N queries are useful in scenarios where the need is to display only the n top-most or the n bottom-most
records from a table based on a condition. This result set can be used for further analysis. For example,
using Top-N analysis you can perform the following types of queries:

• The top three earners in the company
• The four most recent recruits in the company
• The top two sales representatives who have sold the maximum number of products
• The top three products that have had the maximum sales in the last six months

11-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Top-N Analysis

• Top-N queries ask for the n largest or smallest
values of a column. For example:
– What are the ten best selling products?
– What are the ten worst selling products?

• Both largest values and smallest values sets are
considered Top-N queries.

SQL1 11-23

Performing “Top-N” Analysis
Top-N queries use a consistent nested query structure with the elements descr ibed below:

• A subquery or an inline view to generate the sorted list of data. The subquery or the inline view
includes the ORDER BY clause to ensure that the ranking is in the desired order. For results
retrieving the largest values, a DESC parameter is needed.

• An outer query to limit the number of rows in the final result s et. The outer query includes the
following components:

– The ROWNUM pseudocolumn, which assigns a sequential value starting with 1 to each of the
rows returned from the subquery.

– A WHERE clause, which specifies the n rows to be returned. The outer WHERE clause must
use a < or <= operator.

11-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Performing Top-N Analysis

The high-level structure of a Top-N analysis
query is:

SELECT [column_list], ROWNUM
FROM (SELECT [column_list]

FROM table
ORDER BY Top-N_column)

WHERE ROWNUM <= N;

SQL1 11-24

Example of “Top-N” Analysis
The example on the slide illustrates how to display the names and salaries of the top three earners from the
EMPLOYEES table. The subquery returns the details of all employee names and salaries from the
EMPLOYEES table, sorted in the descending order of the salaries. The WHERE ROWNUM < 3 clause of
the main query ensures that only the first three records from this result set are displayed.
Here is another example of Top-N analysis that uses an inline view. The example below uses the inline
view E to display the four most senior employees in the company.

SELECT ROWNUM as SENIOR,E.last_name, E.hire_date
FROM (SELECT last_name,hire_date FROM employees

ORDER BY hire_date)E
WHERE rownum <= 4;

11-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Top-N Analysis

To display the top three earner names and salaries
from the EMPLOYEES table:

SELECT ROWNUM as RANK, last_name, salary
FROM (SELECT last_name,salary FROM employees

ORDER BY salary DESC)
WHERE ROWNUM <= 3;

SQL1 11-25

11-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned that a view is
derived from data in other tables or views and
provides the following advantages:
• Restricts database access
• Simplifies queries
• Provides data independence
• Provides multiple views of the same data
• Can be dropped without removing the underlying

data
• An inline view is a subquery with an alias name.
• Top-N analysis can be done using subqueries and

outer queries.

What Is a View?
A view is based on a table or another view and acts as a window through which data on tables can be
viewed or changed. A view does not contain data. The definition of the view is stored in the data
dictionary. You can see the definition of the view in the USER_VIEWS data dictionary table.

Advantages of Views
• Restrict database access
• Simplify queries
• Provide data independence
• Provide multiple views of the same data
• Can be removed without affecting the underlying data

View Options
• Can be a simple view, based on one table
• Can be a complex view based on more than one table or can contain groups of functions
• Can replace other views with the same name
• Can contain a check constraint
• Can be read-only

SQL1 11-26

11-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 11 Overview

This practice covers the following topics:
• Creating a simple view
• Creating a complex view
• Creating a view with a check constraint
• Attempting to modify data in the view
• Displaying view definitions
• Removing views

Practice 11 Overview
In this practice, you create simple and complex views and attempt to perform DML statements on the
views.

SQL1 11-27

Practice 11

1. Create a view called EMPLOYEES_VU based on the employee numbers, employee names, and
department numbers from the EMPLOYEES table. Change the heading for the employee name to
EMPLOYEE.

2. Display the contents of the EMPLOYEES_VU view.

3. Select the view name and text from the USER_VIEWS data dictionary view.
Note: Another view already exists. The EMP_DETAILS_VIEW was created as part of your schema.
Note: To see more contents of a LONG column, use the iSQL*Plus command SET LONG n, where n is
the value of the number of characters of the LONG column that you want to see.

4. Using your EMPLOYEES_VU view, enter a query to display all employee names and department
numbers.

SQL1 11-28

Practice 11 (continued)
5. Create a view named DEPT50 that contains the employee numbers, employee last names, and

department numbers for all employees in department 50. Label the view columns
EMPNO, EMPLOYEE, and DEPTNO. Do not allow an employee to be reassigned to another
department through the view.

6. Display the structure and contents of the DEPT50 view.

7. Attempt to reassign Matos to department 80.

If you have time, complete the following exercise:
8. Create a view called SALARY_VU based on the employee last names, department names, salaries,

and salary grades for all employees. Use the EMPLOYEES, DEPARTMENTS, and JOB_GRADES
tables. Label the columns Employee, Department, Salary, and Grade, respectively.

Copyright © Oracle Corporation, 2001. All rights reserved.

Other Database Objects

SQL1 12-2

Lesson Aim
In this lesson, you learn how to create and maintain some of the other commonly used database objects.
These objects include sequences, indexes, and synonyms.

12-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Create, maintain, and use sequences
• Create and maintain indexes
• Create private and public synonyms

SQL1 12-3

Database Objects
Many applications require the use of unique numbers as primary key values. You can either build code into
the application to handle this requirement or use a sequence to generate unique numbers.
If you want to improve the performance of some queries, you should consider creating an index. You can
also use indexes to enforce uniqueness on a column or a collection of columns.
You can provide alternative names for objects by using synonyms.

12-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Database Objects

Description

Basic unit of storage; composed of rows
and columns

Logically represents subsets of data from
one or more tables

Generates primary key values

Improves the performance of some queries

Alternative name for an object

Object

Table

View

Sequence

Index

Synonym

SQL1 12-4

What Is a Sequence?
A sequence is a user created database object that can be shared by multiple users to generate unique
integers.
A typical usage for sequences is to create a primary key value, which must be unique for each row. The
sequence is generated and incremented (or decremented) by an internal Oracle routine. This can be a time-
saving object because it can reduce the amount of application code needed to write a sequence-generating
routine.
Sequence numbers are stored and generated independently of tables. Therefore, the same sequence can be
used for multiple tables.

12-4 Copyright © Oracle Corporation, 2001. All rights reserved.

What is a Sequence?

A sequence:
• Automatically generates unique numbers
• Is a sharable object
• Is typically used to create a primary key value
• Replaces application code
• Speeds up the efficiency of accessing sequence

values when cached in memory

SQL1 12-5

Creating a Sequence
Automatically generate sequential numbers by using the CREATE SEQUENCE statement.

In the syntax:
sequence is the name of the sequence generator
INCREMENT BY n specifies the interval between sequence numbers where n is an

integer (If this clause is omitted, the sequence increments by 1.)
START WITH n specifies the first sequence number to be generated (If this clause is

omitted, the sequence starts with 1.)
MAXVALUE n specifies the maximum value the sequence can generate
NOMAXVALUE specifies a maximum value of 10^27 for an ascending sequence and

–1 for a descending sequence (This is the default option.)
MINVALUE n specifies the minimum sequence value
NOMINVALUE specifies a minimum value of 1 for an ascending sequence and –

(10^26) for a descending sequence (This is the default option.)
CYCLE | NOCYCLE specifies whether the sequence continues to generate values after

reaching its maximum or minimum value (NOCYCLE is the default option.)
CACHE n | NOCACHE specifies how many values the Oracle server preallocates and

keep in memory (By default, the Oracle server caches 20 values.)

12-5 Copyright © Oracle Corporation, 2001. All rights reserved.

The CREATE SEQUENCE Statement Syntax

Define a sequence to generate sequential numbers
automatically:

CREATE SEQUENCE sequence
[INCREMENT BY n]
[START WITH n]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

SQL1 12-6

Creating a Sequence (continued)
The example on the slide creates a sequence named DEPT_DEPTID_SEQ to be used for the
DEPARTMENT_ID column of the DEPARTMENTS table. The sequence starts at 120, does not allow
caching, and does not cycle.
Do not use the CYCLE option if the sequence is used to generate primary key values, unless you have a
reliable mechanism that purges old rows faster than the sequence cycles.
For more information, see Oracle9i SQL Reference, “CREATE SEQUENCE.”

Note: The sequence is not tied to a table. Generally, you should name the sequence after its intended use;
however the sequence can be used anywhere, regardless of its name.

12-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a Sequence

• Create a sequence named DEPT_DEPTID_SEQ to
be used for the primary key of the DEPARTMENTS
table.

• Do not use the CYCLE option.

CREATE SEQUENCE dept_deptid_seq
INCREMENT BY 10
START WITH 120
MAXVALUE 9999
NOCACHE
NOCYCLE;

Sequence created.

SQL1 12-7

12-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Sequences

• Verify your sequence values in the
USER_SEQUENCES data dictionary table.

• The LAST_NUMBER column displays the next
available sequence number if NOCACHE is
specified.

SELECT sequence_name, min_value, max_value,
increment_by, last_number

FROM user_sequences;

Confirming Sequences
Once you have created your sequence, it is documented in the data dictionary. Since a sequence is a
database object, you can identify it in the USER_OBJECTS data dictionary table.
You can also confirm the settings of the sequence by selecting from the USER_SEQUENCES data
dictionary view.

SQL1 12-8

Using a Sequence
After you create your sequence, it generates sequential numbers for use in your tables. Reference the
sequence values by using the NEXTVAL and CURRVAL pseudocolumns.
NEXTVAL and CURRVAL Pseudocolumns
The NEXTVAL pseudocolumn is used to extract successive sequence numbers from a specified sequence.
You must qualify NEXTVAL with the sequence name. When you reference sequence.NEXTVAL, a new
sequence number is generated and the current sequence number is placed in CURRVAL.
The CURRVAL pseudocolumn is used to refer to a sequence number that the current user has just generated.
NEXTVAL must be used to generate a sequence number in the current user’s session before CURRVAL can
be referenced. You must qualify CURRVAL with the sequence name. When sequence.CURRVAL is
referenced, the last value returned to that user’s process is displayed.

12-8 Copyright © Oracle Corporation, 2001. All rights reserved.

NEXTVAL and CURRVAL Pseudocolumns

• NEXTVAL returns the next available sequence
value. It returns a unique value every time it is
referenced, even for different users.

• CURRVAL obtains the current sequence value.
• NEXTVAL must be issued for that sequence before

CURRVAL contains a value.

SQL1 12-9

Rules for Using NEXTVAL and CURRVAL
You can use NEXTVAL and CURRVAL in the following contexts:

• The SELECT list of a SELECT statement that is not part of a subquery
• The SELECT list of a subquery in an INSERT statement
• The VALUES clause of an INSERT statement
• The SET clause of an UPDATE statement

You cannot use NEXTVAL and CURRVAL in the following contexts:
• The SELECT list of a view
• A SELECT statement with the DISTINCT keyword
• A SELECT statement with GROUP BY, HAVING, or ORDER BY clauses
• A subquery in a SELECT, DELETE, or UPDATE statement
• The DEFAULT expression in a CREATE TABLE or ALTER TABLE statement

For more information, see Oracle9i SQL Reference, “Pseudocolumns” section and “CREATE SEQUENCE.”

SQL1 12-10

12-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Sequence

• Insert a new department named “Support” in
location ID 2500.

• View the current value for the DEPT_DEPTID_SEQ
sequence.

INSERT INTO departments(department_id,
department_name, location_id)

VALUES (dept_deptid_seq.NEXTVAL,
'Support', 2500);

1 row created.

SELECT dept_deptid_seq.CURRVAL
FROM dual;

Using a Sequence
The example on the slide inserts a new department in the DEPARTMENTS table. It uses the
DEPT_DEPTID_SEQ sequence for generating a new department number as follows:

You can view the current value of the sequence:

SELECT dept_deptid_seq.CURRVAL
FROM dual;

CURRVAL

120

Suppose now you want to hire employees to staff the new department. The INSERT statement to be
executed for all new employees can include the following code:

INSERT INTO employees (employee_id, department_id, ...)
VALUES (employees_seq.NEXTVAL, dept_deptid_seq .CURRVAL, ...);

Note: The preceding example assumes that a sequence called EMPLOYEE_SEQ has already been created
for generating new employee numbers.

SQL1 12-11

Caching Sequence Values
Cache sequences in memory to provide faster access to those sequence values. The cache is populated the first
time you refer to the sequence. Each request for the next sequence value is retrieved from the cached
sequence. After the last sequence value is used, the next request for the sequence pulls another cache of
sequences into memory.
Gaps in the Sequence
Although sequence generators issue sequential numbers without gaps, this action occurs independent of a
commit or rollback. Therefore, if you roll back a statement containing a sequence, the number is lost.
Another event that can cause gaps in the sequence is a system crash. If the sequence caches values in the
memory, then those values are lost if the system crashes.
Because sequences are not tied directly to tables, the same sequence can be used for multiple tables. If you do
so, each table can contain gaps in the sequential numbers.
Viewing the Next Available Sequence Value without Incrementing It
If the sequence was created with NOCACHE, it is possible to view the next available sequence value without
incrementing it by querying the USER_SEQUENCES table.

12-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Using a Sequence

• Caching sequence values in memory gives faster
access to those values.

• Gaps in sequence values can occur when:
– A rollback occurs
– The system crashes
– A sequence is used in another table

• If the sequence was created with NOCACHE, view
the next available value, by querying the
USER_SEQUENCES table.

SQL1 12-12

12-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Modifying a Sequence

Change the increment value, maximum value,
minimum value, cycle option, or cache option.

ALTER SEQUENCE dept_deptid_seq
INCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;

Sequence altered.

Altering a Sequence
If you reach the MAXVALUE limit for your sequence, no additional values from the sequence are allocated
and you will receive an error indicating that the sequence exceeds the MAXVALUE. To continue to use the
sequence, you can modify it by using the ALTER SEQUENCE statement.

Syntax
ALTER SEQUENCE sequence

[INCREMENT BY n]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}];

In the syntax:
sequence is the name of the sequence generator

For more information, see Oracle9i SQL Reference, “ALTER SEQUENCE.”

SQL1 12-13

12-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Modifying
a Sequence

• You must be the owner or have the ALTER
privilege for the sequence.

• Only future sequence numbers are affected.
• The sequence must be dropped and

re-created to restart the sequence at a different
number.

• Some validation is performed.

Guidelines for Modifying Sequences
• You must be the owner or have the ALTER privilege for the sequence in order to modify it.
• Only future sequence numbers are affected by the ALTER SEQUENCE statement.
• The START WITH option cannot be changed using ALTER SEQUENCE. The sequence must be

dropped and re-created in order to restart the sequence at a different number.
• Some validation is performed. For example, a new MAXVALUE that is less than the current sequence

number cannot be imposed.

ALTER SEQUENCE dept_deptid_seq
INCREMENT BY 20
MAXVALUE 90
NOCACHE
NOCYCLE;

ALTER SEQUENCE dept_deptid_seq
*
ERROR at line 1:
ORA-04009: MAXVALUE cannot be made to be less than the current

value

SQL1 12-14

12-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing a Sequence

• Remove a sequence from the data dictionary by
using the DROP SEQUENCE statement.

• Once removed, the sequence can no longer be
referenced.

DROP SEQUENCE dept_deptid_seq;
Sequence dropped.

Removing a Sequence
To remove a sequence from the data dictionary, use the DROP SEQUENCE statement. You must be the
owner of the sequence or have the DROP ANY SEQUENCE privilege to remove it.

Syntax
DROP SEQUENCE sequence;

In the syntax:
sequence is the name of the sequence generator

For more information, see Oracle9i SQL Reference, “DROP SEQUENCE.”

SQL1 12-15

Indexes
An Oracle server index is a schema object that can speed up the retrieval of rows by using a pointer.
Indexes can be created explicitly or automatically. If you do not have an index on the column, then a full
table scan occurs.
An index provides direct and fast access to rows in a table. Its purpose is to reduce the necessity of disk I/O
by using an indexed path to locate data quickly. The index is used and maintained automatically by the
Oracle server. Once an index is created, no direct activity is required by the user.
Indexes are logically and physically independent of the table they index. This means that they can be
created or dropped at any time and have no effect on the base tables or other indexes.
Note: When you drop a table, corresponding indexes are also dropped.
For more information, see Oracle9i Concepts, “Schema Objects” section, “Indexes” topic.

12-15 Copyright © Oracle Corporation, 2001. All rights reserved.

What is an Index?

An index:
• Is a schema object
• Is used by the Oracle server to speed up the

retrieval of rows by using a pointer
• Can reduce disk I/O by using a rapid path access

method to locate data quickly
• Is independent of the table it indexes
• Is used and maintained automatically by the

Oracle server

SQL1 12-16

Types of Indexes
Two types of indexes can be created. One type is a unique index: the Oracle server automatically creates
this index when you define a column in a table to have a PRIMARY KEY or a UNIQUE key constraint. The
name of the index is the name given to the constraint.
The other type of index is a nonunique index, which a user can create. For example, you can create a
FOREIGN KEY column index for a join in a query to improve retrieval speed.

Note: You can manually create a unique index, but it is recommended that you create a unique constraint,
which implicitly creates a unique index.

12-16 Copyright © Oracle Corporation, 2001. All rights reserved.

How Are Indexes Created?

• Automatically: A unique index is created
automatically when you define a PRIMARY KEY or
UNIQUE constraint in a table definition.

• Manually: Users can create nonunique indexes on
columns to speed up access to the rows.

SQL1 12-17

12-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating an Index

• Create an index on one or more columns.

• Improve the speed of query access to the
LAST_NAME column in the EMPLOYEES table.

CREATE INDEX emp_last_name_idx
ON employees(last_name);
Index created.

CREATE INDEX index
ON table (column[, column]...);

Creating an Index
Create an index on one or more columns by issuing the CREATE INDEX statement.

In the syntax:
index is the name of the index
table is the name of the table
column is the name of the column in the table to be indexed

For more information, see Oracle9i SQL Reference, “CREATE INDEX.”

SQL1 12-18

More Is Not Always Better
More indexes on a table does not mean faster queries. Each DML operation that is committed on a table
with indexes means that the indexes must be updated. The more indexes you have associated with a table,
the more effort the Oracle server must make to update all the indexes after a DML operation.
When to Create an Index

Therefore, you should create indexes only if:
• The column contains a wide range of values
• The column contains a large number of null values
• One or more columns are frequently used together in a WHERE clause or join condition

• The table is large and most queries are expected to retrieve less than 2–4% of the rows
Remember that if you want to enforce uniqueness, you should define a unique constraint in the table
definition. Then a unique index is created automatically.

12-18 Copyright © Oracle Corporation, 2001. All rights reserved.

When to Create an Index

You should create an index if:
• A column contains a wide range of values
• A column contains a large number of null values
• One or more columns are frequently used together

in a WHERE clause or a join condition

• The table is large and most queries are expected
to retrieve less than 2 to 4 percent of the rows

SQL1 12-19

12-19 Copyright © Oracle Corporation, 2001. All rights reserved.

When Not to Create an Index

It is usually not worth creating an index if:
• The table is small
• The columns are not often used as a condition in

the query
• Most queries are expected to retrieve more than 2

to 4 percent of the rows in the table
• The table is updated frequently
• The indexed columns are referenced as part of an

expression

SQL1 12-20

12-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Confirming Indexes

• The USER_INDEXES data dictionary view contains
the name of the index and its uniqueness.

• The USER_IND_COLUMNS view contains the index
name, the table name, and the column name.

SELECT ic.index_name, ic.column_name,
ic.column_position col_pos,ix.uniqueness

FROM user_indexes ix, user_ind_columns ic
WHERE ic.index_name = ix.index_name
AND ic.table_name = 'EMPLOYEES';

Confirming Indexes
Confirm the existence of indexes from the USER_INDEXES data dictionary view. You can also check the
columns involved in an index by querying the USER_IND_COLUMNS view.

The example on the slide displays all the previously created indexes, with the names of the affected
column, and the index’s uniqueness, on the EMPLOYEES table.

SQL1 12-21

12-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Function-Based Indexes

• A function-based index is an index based on
expressions.

• The index expression is built from table columns,
constants, SQL functions, and user-defined
functions.

CREATE INDEX upper_dept_name_idx
ON departments(UPPER(department_name));

Index created.

SELECT *
FROM departments
WHERE UPPER(department_name) = 'SALES';

Function-Based Index
Function-based indexes defined with the UPPER(column_name) or LOWER(column_name)
keywords allow case-insensitive searches. For example, the following index:

CREATE INDEX upper_last_name_idx ON employees (UPPER(last_name));
Facilitates processing queries such as:

SELECT * FROM employees WHERE UPPER(last_name) = 'KING';

To ensure that the Oracle server uses the index rather than performing a full table scan, be sure that the
value of the function is not null in subsequent queries. For example, the following statement is guaranteed
to use the index, but without the WHERE clause the Oracle server may perform a full table scan:

SELECT * FROM employees
WHERE UPPER (last_name) IS NOT NULL
ORDER BY UPPER (last_name);

The Oracle server treats indexes with columns marked DESC as function-based indexes. The columns
marked DESC are sorted in descending order.

SQL1 12-22

Removing an Index
You cannot modify indexes. To change an index, you must drop it and then re-create it. Remove an index
definition from the data dictionary by issuing the DROP INDEX statement. To drop an index, you must be
the owner of the index or have the DROP ANY INDEX privilege.

In the syntax:
index is the name of the index

Note: If you drop a table, indexes and constraints are automatically dropped, but views and
sequences remain.

12-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing an Index

• Remove an index from the data dictionary by
using the DROP INDEX command.

• Remove the UPPER_LAST_NAME_IDX index from
the data dictionary.

• To drop an index, you must be the owner of the
index or have the DROP ANY INDEX privilege.

DROP INDEX upper_last_name_idx;
Index dropped.

DROP INDEX index;

SQL1 12-23

Creating a Synonym for an Object
To refer to a table owned by another user, you need to prefix the table name with the name of the user who
created it followed by a period. Creating a synonym eliminates the need to qualify the object name with the
schema and provides you with an alternative name for a table, view, sequence, procedure, or other objects.
This method can be especially useful with lengthy object names, such as views.
In the syntax:

PUBLIC creates a synonym accessible to all users
synonym is the name of the synonym to be created
object identifies the object for which the synonym is created

Guidelines
• The object cannot be contained in a package.
• A private synonym name must be distinct from all other objects owned by the same user.

For more information, see Oracle9i SQL Reference, “CREATE SYNONYM.”

12-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Synonyms

Simplify access to objects by creating a synonym
(another name for an object). With synonyms, you can:
• Ease referring to a table owned by another user
• Shorten lengthy object names

CREATE [PUBLIC] SYNONYM synonym
FOR object;

SQL1 12-24

12-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating and Removing Synonyms

• Create a shortened name for the
DEPT_SUM_VU view.

• Drop a synonym.

CREATE SYNONYM d_sum
FOR dept_sum_vu;
Synonym Created.

DROP SYNONYM d_sum;
Synonym dropped.

Creating a Synonym for an Object (continued)
The slide example creates a synonym for the DEPT_SUM_VU view for quicker reference.

The database administrator can create a public synonym accessible to all users. The following example creates
a public synonym named DEPT for Alice’s DEPARTMENTS table:

CREATE PUBLIC SYNONYM dept
FOR alice.departments;
Synonym created.

Removing a Synonym
To drop a synonym, use the DROP SYNONYM statement. Only the database administrator can drop a public
synonym.

DROP PUBLIC SYNONYM dept;
Synonym dropped.

For more information, see Oracle9i SQL Reference, “DROP SYNONYM.”

SQL1 12-25

Summary
In this lesson you should have learned about some of the other database objects including sequences,
indexes, and views.
Sequences
The sequence generator can be used to automatically generate sequence numbers for rows in tables. This
can save time and can reduce the amount of application code needed.
A sequence is a database object that can be shared with other users. Information about the sequence can be
found in the USER_SEQUENCES table of the data dictionary.
To use a sequence, reference it with either the NEXTVAL or the CURRVAL pseudocolumns.

• Retrieve the next number in the sequence by referencing sequence.NEXTVAL.
• Return the current available number by referencing sequence.CURRVAL.

Indexes
Indexes are used to improve query retrieval speed. Users can view the definitions of the indexes in the
USER_INDEXES data dictionary view. An index can be dropped by the creator, or a user with the DROP
ANY INDEX privilege, by using the DROP INDEX statement.

Synonyms
Database administrators can create public synonyms and users can create private synonyms for
convenience, by using the CREATE SYNONYM statement. Synonyms permit short names or alternative
names for objects. Remove synonyms by using the DROP SYNONYM statement.

12-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Automatically generate sequence numbers by

using a sequence generator
• View sequence information in the

USER_SEQUENCES data dictionary table

• Create indexes to improve query retrieval speed
• View index information in the USER_INDEXES

dictionary table
• Use synonyms to provide alternative names for

objects

SQL1 12-26

12-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 12 Overview

This practice covers the following topics:
• Creating sequences
• Using sequences
• Creating nonunique indexes
• Displaying data dictionary information about

sequences and indexes
• Dropping indexes

Practice 12 Overview
In this practice, you create a sequence to be used when populating your table. You also create implicit and
explicit indexes.

SQL1 12-27

Practice 12

1. Create a sequence to be used with the primary key column of the DEPT table. The
sequence should start at 200 and have a maximum value of 1000. Have your sequence increment
by ten numbers. Name the sequence DEPT_ID_SEQ.

2. Write a query in a script to display the following information about your sequences: sequence name,
maximum value, increment size, and last number. Name the script lab12_2.sql. Run the statement
in your script.

3. Write a script to insert two rows into the DEPT table. Name your script lab12_3.sql. Be sure to use
the sequence that you created for the ID column. Add two departments named Education and
Administration. Confirm your additions. Run the commands in your script.

4. Create a nonunique index on the foreign key column (DEPT_ID) in the EMP table.
5. Display the indexes and uniqueness that exist in the data dictionary for the EMP table.

Save the statement into a script named lab12_5.sql.

SQL1 12-28

